×

Quantum phase properties of a state driven by a classical field. (English) Zbl 07880118

Summary: We consider a nonclassical state generated by an atom-cavity field interaction in presence of a driven field. In the scheme, the two-level atom is moved through the cavity and driven by a classical field. The atom interacts dispersively with the cavity field, which results in a photon-number-dependent Stark shift. Assuming that the atom enters the cavity in the excited state \(|{a} \rangle\), the obtained output cavity field is taken into account. The state vector \(|\psi (t)\rangle\) describes the entire atom-field system but in our work we deal with the statistical aspects of the cavity field only. The quantum state that corresponds to the output cavity field is obtained by tracing out the atom part from \(|{\psi (t)} \rangle \langle{\psi (t)} |\). Different quantum phase properties such as quantum phase distribution, angular \(Q\) phase function, phase dispersion are evaluated for the obtained radiation field. The second-order correlation function \(g^2(0)\), an indirect phase characteristic is also considered.

MSC:

81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
81-XX Quantum theory
81Vxx Applications of quantum theory to specific physical systems

References:

[1] Glauber, RJ, Phys. Rev., 131, 2766, 1963 · Zbl 1371.81166 · doi:10.1103/PhysRev.131.2766
[2] Sudarshan, ECG, Phys. Rev. Lett., 10, 277, 1963 · Zbl 0113.21305 · doi:10.1103/PhysRevLett.10.277
[3] Hillery, M., Phys. Rev. A, 61, 2000 · doi:10.1103/PhysRevA.61.022309
[4] Agarwal, GS, Phys. Rev. Lett., 57, 827-829, 1986 · doi:10.1103/PhysRevLett.57.827
[5] Furusawa, A.; Sorensen, JL; Braunstein, SL; Fuchs, CA; Kimble, HJ; Polzik, ES, Science, 282, 706, 1998 · doi:10.1126/science.282.5389.706
[6] Yuan, Z.; Kardynal, BE; Stevenson, RM; Shields, AJ; Lobo, CJ; Cooper, K.; Beattie, NS; Ritchie, DA; Pepper, M., Science, 295, 102, 2002 · doi:10.1126/science.1066790
[7] Ekert, AK, Phys. Rev. Lett., 67, 661, 1991 · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[8] Bennett, CH; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wootters, WK, Phys. Rev. Lett., 70, 1895, 1993 · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[9] Bennett, CH; Wiesner, SJ, Phys. Rev. Lett., 69, 2881, 1992 · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[10] Bouwmeester, D.; Ekert, A.; Zeilinger, A., The physics of quantum information, 2000, Berlin: Springer, Berlin · Zbl 1008.81504 · doi:10.1007/978-3-662-04209-0
[11] Susskind, L.; Glogower, J., Phys. Phys. Fiz., 1, 49, 1964
[12] Barnett, SM; Pegg, DT, J. Phys. A: Math. Gen., 19, 3849, 1986 · doi:10.1088/0305-4470/19/18/030
[13] Pegg, DT; Barnett, SM, J. Mod. Opt., 36, 7, 1989 · doi:10.1080/09500348914550021
[14] Pegg, DT; Barnett, SM, Phys. Rev. A, 39, 1665, 1989 · doi:10.1103/PhysRevA.39.1665
[15] Dirac, P. A. M.: Proc. R. Soc. London, Ser. A 114, 243 (1927) · JFM 53.0847.01
[16] Louisell, WH, Phys. Lett., 7, 60, 1963 · doi:10.1016/0031-9163(63)90442-6
[17] Xu, F.; Qi, B.; Ma, X.; Xu, H.; Zheng, H.; Lo, HK, Opt. Express, 20, 12366, 2012 · doi:10.1364/OE.20.012366
[18] Raffaelli, F.; Sibson, P.; Kennard, JE; Mahler, DH; Thompson, MG; Matthews, JC, Opt. Exp., 26, 19730, 2018 · doi:10.1364/OE.26.019730
[19] Horak, P., J. Mod. Opt., 51, 1249, 2004 · Zbl 1055.81008 · doi:10.1080/09500340408230420
[20] Denschlag, J et. al.: Science 287, 97 (2000)
[21] Ahn, J.; Weinacht, T.; Bucksbaum, P., Science, 287, 463, 2000 · doi:10.1126/science.287.5452.463
[22] Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H., Rev. Mod. Phys., 74, 145, 2002 · Zbl 1371.81006 · doi:10.1103/RevModPhys.74.145
[23] Park, Y.; Depeursinge, C.; Popescu, G., Nat. Photonics, 12, 578, 2018 · doi:10.1038/s41566-018-0253-x
[24] Emery, V.; Kivelson, S., Nature, 374, 434, 1995 · doi:10.1038/374434a0
[25] Banerjee, S.; Srikanth, R., Phys. Rev. A, 76, 2007 · doi:10.1103/PhysRevA.76.062109
[26] Banerjee, S.; Ghosh, J.; Ghosh, R., Phys. Rev. A, 75, 2007 · doi:10.1103/PhysRevA.75.062106
[27] Abdel-Aty, M., Azzeer, A., M. Abdalla, S.: Phys. A Stat. Mech. Appl. 389, 3375 (2010)
[28] Banerjee, S., Open Quantum Systems: Dynamics of Nonclassical Evolution, 2018, Singapore: Springer, Singapore · Zbl 1412.81001 · doi:10.1007/978-981-13-3182-4
[29] Orlowski, A., Phys. Rev. A, 48, 727, 1993 · doi:10.1103/PhysRevA.48.727
[30] Carruthers, P.; Nieto, MM, Rev. Mod. Phys., 40, 411, 1968 · doi:10.1103/RevModPhys.40.411
[31] Gupta, P.; Pathak, A., Phys. Lett. A, 365, 393, 2007 · doi:10.1016/j.physleta.2007.01.031
[32] Joshi, C.; Jonson, M.; Andersson, E.; Öhberg, P., J. Phys. B: At. Mol. Opt. Phys., 44, 2011 · doi:10.1088/0953-4075/44/24/245503
[33] Alam, N.; Mandal, S.; Öhberg, P., J. Phys. B: At. Mol. Opt. Phys., 48, 2015 · doi:10.1088/0953-4075/48/4/045503
[34] Alam, N.; Mandal, S., Opt. Commun., 359, 221, 2016 · doi:10.1016/j.optcom.2015.09.034
[35] Anetsberger, G., Nat. Phys., 5, 909, 2009 · doi:10.1038/nphys1425
[36] Joshi, C.; Larson, J.; Jonson, M.; Andersson, E.; Öhberg, P., Phys. Rev. A, 85, 2012 · doi:10.1103/PhysRevA.85.033805
[37] Joshi, C.; Hutter, A.; Zimmer, FE; Jonson, M.; Andersson, E.; Öhberg, P., Phys. Rev. A, 82, 2010 · doi:10.1103/PhysRevA.82.043846
[38] Chatterjee, A.; Dhar, HS; Ghosh, R., J. Phys. B: At. Mol. Opt. Phys., 45, 2012 · doi:10.1088/0953-4075/45/20/205501
[39] Lemonde, M-A; Didier, N.; Clerk, AA, Phys. Rev. A, 90, 2014 · doi:10.1103/PhysRevA.90.063824
[40] Knight, P. L., Gerry, G. C.: Introductory Quantum Optics, Cambridge University Press, (2005) (2005)
[41] Loudon, R.; Knight, PL, J. Mod. Opt., 34, 709, 1987 · Zbl 0941.81613 · doi:10.1080/09500348714550721
[42] Alsing, P.; Guo, DS; Carmichael, HJ, Phys. Rev. A, 45, 5135, 1992 · doi:10.1103/PhysRevA.45.5135
[43] Zheng, SB, Phys. Rev. A, 74, 2006 · doi:10.1103/PhysRevA.74.043803
[44] Ghosh, A.; Das, PK, Int. J. Theor. Phys., 47, 1731, 2008 · Zbl 1149.81404 · doi:10.1007/s10773-007-9615-8
[45] Chen, CY; Feng, M.; Gao, KL, Phys. Rev. A, 73, 2006 · doi:10.1103/PhysRevA.73.034305
[46] Scully, MO; Zubairy, MS, Quantum Optics, 1997, Cambridge: Cambridge University Press, Cambridge · Zbl 0993.81002 · doi:10.1017/CBO9780511813993
[47] Peng, J. S., Li, G. X., Zhou, P.: Phys. Rev. A, Vol. 46 (3), 1516 (1992)
[48] Agarwal, GS; Chaturvedi, S.; Tara, K.; Srinivasan, V., Phys. Rev. A, 45, 4904, 1992 · doi:10.1103/PhysRevA.45.4904
[49] Carruthers, P.; Nieto, MM, Rev. Mod. Phys., 40, 411, 1968 · doi:10.1103/RevModPhys.40.411
[50] Husimi, K., J. Phys. Soc. Jpn., 22, 264, 1940 · JFM 66.1175.02
[51] Thapliyal, K.; Banerjee, S.; Pathak, A., Ann. Phys., 366, 4904, 2016 · Zbl 1342.81220 · doi:10.1016/j.aop.2016.01.010
[52] Thapliyal, K.; Pathak, A.; Sen, B.; Perina, J., Phys. Rev. A, 90, 2014 · doi:10.1103/PhysRevA.90.013808
[53] Wiseman, HM; Milburn, GJ, Quantum Measurement and Control, 2010, Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1350.81004
[54] Walls, DF; Milburn, GJ, Quantum Optics, 2008, Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1163.81001 · doi:10.1007/978-3-540-28574-8
[55] Mavrogordatos, ThK, J. Opt., 25, 2040, 2023 · doi:10.1088/2040-8986/aca91c
[56] Parvin, B., Phys. Scr., 99, 2024 · doi:10.1088/1402-4896/ad173a
[57] Alemu, M.; Russ, J., Laser Res., 43, 267-279, 2022 · doi:10.1007/s10946-022-10049-y
[58] Faraon, A.; Majumdar, A.; Vucković, J., Phys. Rev. A, 81, 2010 · doi:10.1103/PhysRevA.81.033838
[59] Leibfried, D., Science, 304, 1476, 2004 · doi:10.1126/science.1097576
[60] Schmidt, P.O et al.: Science 309, 749 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.