×

Double fast algorithm for solving time-space fractional diffusion problems with spectral fractional Laplacian. (English) Zbl 07879826

Summary: This paper presents an efficient and concise double fast algorithm to solve high dimensional time-space fractional diffusion problems with spectral fractional Laplacian. We first establish semi-discrete scheme of time-space fractional diffusion equation, which uses linear finite element or fourth-order compact difference method combining with matrix transfer technique to approximate spectral fractional Laplacian. Then we introduce a fast time-stepping L1 scheme for time discretization. The proposed scheme can exactly evaluate fractional power of matrix and perform matrix-vector multiplication at per time level by using discrete sine transform, which doesn’t need to resort to any iteration method and can significantly reduce computation cost and memory requirement. Further, we address stability and convergence analyses of full discrete scheme based on fast time-stepping L1 scheme on graded time mesh. Our error analysis shows that the choice of graded mesh factor \(\omega = (2-\alpha) / \alpha\) shall give an optimal temporal convergence \(\mathcal{O}(N^{-(2-\alpha)})\) with \(N\) denoting the number of time mesh. Finally, ample numerical examples are delivered to illustrate our theoretical analysis and the efficiency of the suggested scheme.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

References:

[1] Klafter, J.; Sokolov, I. M., Anomalous diffusion spreads its wings, Phys. World, 18, 8, 29-32, 2005
[2] Bucur, C.; Valdinoci, E., Nonlocal Diffusion and Applications, 2016, Springer · Zbl 1377.35002
[3] Duo, S. W.; Wang, H.; Zhang, Y. Z., A comparative study on nonlocal diffusion operators related to the fractional Laplacian, Discrete Contin. Dyn. Syst., Ser. B, 24, 231-256, 2019 · Zbl 1404.45003
[4] Du, Q., Nonlocal Modeling, Analysis, and Computation, 2019, Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 1423.00007
[5] Deng, W. H.; Hou, R.; Wang, W. L.; Xu, P. B., Modeling Anomalous Diffusion: From Statistics to Mathematics, 2020, World Scientific: World Scientific Singapore · Zbl 1453.35001
[6] Song, R. M.; Vondraček, Z., On the relationship between subordinate killed and killed subordinate processes, Electron. Commun. Probab., 13, 325-336, 2008 · Zbl 1187.60057
[7] Song, R. M.; Vondraček, Z., Potential theory of subordinate killed Brownian motion in a domain, Probab. Theory Relat. Fields, 125, 578-592, 2003 · Zbl 1022.60078
[8] Deng, W. H.; Li, B. Y.; Tian, W. Y.; Zhang, P. W., Boundary problems for the fractional and tempered fractional operators, Multiscale Model. Simul., 16, 1, 125-149, 2018 · Zbl 1391.60104
[9] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77, 2000 · Zbl 0984.82032
[10] Sikorskii, A.; Meerschaert, M. M., Stochastic Models for Fractional Calculus, 2012, De Gruyter: De Gruyter Berlin, Boston · Zbl 1247.60003
[11] Golding, I.; Cox, E. C., Physical nature of bacterial cytoplasm, Phys. Rev. Lett., 96, Article 098102 pp., 2006
[12] Edwards, A. M.; Phillips, R., Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer, Nature, 449, 1044-1048, 2007
[13] Humphries, N. E.; Queiroz, N., Environmental context explains Lévy and Brownian movement patterns of marine predators, Nature, 465, 1066-1069, 2010
[14] Kirchner, J. W.; Feng, X. H.; Neal, C., Fractal stream chemistry and its implications for contaminant transport in catchments, Nature, 403, 524-527, 2000
[15] Wolfersdorf, L. V., On identification of memory kernels in linear theory of heat conduction, Math. Methods Appl. Sci., 17, 919-932, 1994 · Zbl 0811.45004
[16] Liu, X.; Deng, W. H., Numerical approximation for fractional diffusion equation forced by a tempered fractional Gaussian noise, J. Sci. Comput., 84, 21, 2020 · Zbl 07229474
[17] Nochetto, R. H.; Otárola, E.; Salgado, A. J., A PDE approach to space-time fractional parabolic problems, SIAM J. Numer. Anal., 54, 2, 848-873, 2016 · Zbl 1337.26014
[18] Nochetto, R. H.; Otárola, E.; Salgado, A. J., A PDE approach to fractional diffusion in general domains: a priori error analysis, Found. Comput. Math., 15, 3, 733-791, 2014 · Zbl 1347.65178
[19] Bonito, A.; Borthagaray, J. P.; Nochetto, R. H.; Otárola, E.; Salgado, A. J., Numerical methods for fractional diffusion, Comput. Vis. Sci., 19, 19-46, 2018 · Zbl 07704543
[20] Chen, S.; Shen, J., An efficient and accurate numerical method for the spectral fractional Laplacian equation, J. Sci. Comput., 82, 17, 1-25, 2020 · Zbl 1433.65235
[21] Bonito, A.; Pasciak, J. E., Numerical approximation of fractional powers of elliptic operators, Math. Comput., 84, 295, 2083-2110, 2015 · Zbl 1331.65159
[22] Bonito, A.; Lei, W. Y.; Pasciak, J. E., Numerical approximation of space-time fractional parabolic equations, Comput. Methods Appl. Math., 17, 4, 679-705, 2017 · Zbl 1434.65175
[23] Bonito, A.; Lei, W. Y.; Pasciak, J. E., The approximation of parabolic equations involving fractional powers of elliptic operators, J. Comput. Appl. Math., 315, 32-48, 2017 · Zbl 1416.65338
[24] Harizanov, S.; Lazarov, R.; Margenov, S.; Marinov, P.; Pasciak, J., Analysis of numerical methods for spectral fractional elliptic equations based on the best uniform rational approximation, J. Comput. Phys., 408, Article 109285 pp., 2020 · Zbl 07505620
[25] Harizanov, S.; Lazarov, R.; Margenov, S.; Marinov, P., The best uniform rational approximation: application to solving equations involving fractional powers of elliptic operators, (IICT-BAS, 2020)
[26] Harizanov, S.; Lazarov, R.; Margenov, S.; Marinov, P., Numerical solution of fractional diffusion-reaction problems based on BURA, Comput. Math. Appl., 80, 316-331, 2020 · Zbl 1452.65060
[27] Ilic, M.; Liu, F.; Turner, I.; Anh, V., Numerical approximation of a fractional-in-space diffusion equation, I, Fract. Calc. Appl. Anal., 8, 3, 323-341, 2005 · Zbl 1126.26009
[28] Yang, Q. Q.; Turner, I.; Liu, F. W.; Ilic, M., Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33, 3, 1159-1180, 2011 · Zbl 1229.35315
[29] Szekeres, B. J.; Izsák, F., Finite difference approximation of space-fractional diffusion problems: the matrix transformation method, Comput. Math. Appl., 73, 2, 261-269, 2017 · Zbl 1368.65148
[30] Duo, S. W.; Ju, L. L.; Zhang, Y. Z., A fast algorithm for solving the space-time fractional diffusion equation, Comput. Math. Appl., 75, 6, 1929-1941, 2018 · Zbl 1409.65053
[31] Burrage, K.; Hale, N.; Kay, D., An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations, SIAM J. Sci. Comput., 34, 4, A2145-A2172, 2012 · Zbl 1253.65146
[32] Maros, G.; Izsák, F., Finite element methods for fractional-order diffusion problems with optimal convergence order, Comput. Math. Appl., 80, 10, 2105-2114, 2020 · Zbl 1452.65351
[33] Szekeres, B. J.; Izsák, F., Finite element approximation of fractional order elliptic boundary value problems, J. Comput. Appl. Math., 292, 553-561, 2016 · Zbl 1327.65215
[34] Zheng, M. L.; Jin, Z. M.; Liu, F. W.; Anh, V., Matrix transfer technique for anomalous diffusion equation involving fractional Laplacian, Appl. Numer. Math., 172, 242-258, 2022 · Zbl 1484.65238
[35] Elliott, J. F., The characteristic roots of certain real symmetric matrices, 1953, The University of Tennessee, Master’s thesis
[36] LeVeque, R. J., Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, 1955, Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia
[37] Gregory, R. T.; Carney, D., A Collection of Matrices for Testing Computational Algorithm, 1969, Wiley-Interscience: Wiley-Interscience New York · Zbl 0195.44803
[38] Gallier, J., Discrete Mathematics, 2010, Springer: Springer New York
[39] Noble, E., The Rise and Fall of the German Combinatorial Analysis, 2022, Springer: Springer Cham · Zbl 1502.01008
[40] Alien’s Mathematics, Generalized multinomial theorem, 2022
[41] Ju, L.; Zhang, J.; Zhu, L.; Du, Q., Fast explicit integration factor methods for semilinear parabolic equations, J. Sci. Comput., 62, 431-455, 2015 · Zbl 1317.65172
[42] Zhu, L.; Ju, L.; Zhao, W. D., Fast high-order compact exponential time differencing Runge-Kutta methods for second-order semilinear parabolic equations, J. Sci. Comput., 67, 1043-1065, 2016 · Zbl 1342.65187
[43] Jiang, S. D.; Zhang, J. W.; Zhang, Q.; Zhang, Z. M., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21, 3, 650-678, 2017 · Zbl 1488.65247
[44] Yan, Y. G.; Sun, Z. Z.; Zhang, J. W., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme, Commun. Comput. Phys., 22, 4, 1028-1048, 2017 · Zbl 1488.65306
[45] Huang, Y. X.; Li, Q. G.; Li, R. X.; Zeng, F. H.; Guo, L., A unified fast memory-saving time-stepping method for fractional operators and its applications, Numer. Math., 15, 3, 679-714, 2022 · Zbl 1524.65349
[46] Huang, Y. X.; Zeng, F. H.; Guo, L., Error estimate of the fast L1 method for time-fractional subdiffusion equations, Appl. Math. Lett., 133, Article 108288 pp., 2022 · Zbl 1524.65350
[47] Trefethen, L. N.; Weideman, J. A.C., The exponentially convergent trapezoidal rule, SIAM Rev., 56, 3, 385-458, 2014 · Zbl 1307.65031
[48] Guo, L.; Zeng, F. H.; Turner, I.; Burrage, K.; Karniadakis, G. E., Efficient multistep methods for tempered fractional calculus: algorithms and simulations, SIAM J. Sci. Comput., 41, 4, A2510-A2535, 2019 · Zbl 07099350
[49] Podlubny, I., Fractional Differential Equations, 1999, Academic Press: Academic Press San Diego · Zbl 0918.34010
[50] Chen, H.; Stynes, M., Blow-up of error estimates in time-fractional initial-boundary value problems, IMA J. Numer. Anal., 41, 2, 974-997, 2021 · Zbl 07528268
[51] Stynes, M.; O’Riordan, E.; Gracia, J. L., Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 2, 1057-1079, 2017 · Zbl 1362.65089
[52] Bu, L. L.; Mei, L. Q.; Hou, Y., Stable second-order schemes for the space-fractional Cahn-Hilliard and Allen-Cahn equations, Comput. Math. Appl., 78, 3485-3500, 2019 · Zbl 1443.65238
[53] Zhang, T.; Sheng, Y., The H^1-error analysis of the finite element method for solving the fractional diffusion equation, J. Math. Anal. Appl., 493, Article 124540 pp., 2021 · Zbl 1452.65263
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.