×

Fractional quantum network. (English) Zbl 07879186

Summary: The possibility of generating a multipartite entanglement fractionally via three different types of interactions to generate a three qubit network has been discussed. The idea has been illustrated by considering a Heisenberg model, where one of its terminal interacts locally with a control qubit via Dzyaloshinskii-Moriya, Dipolar or Rashba interactions. It has been shown that, the fractional order and the interactions strengths can be used to stabilize the amount of entanglement and its coherence between the three qubits. The sudden/ gradual behavior of the generated entanglement and its coherence have been displayed at small/large fractional order, respectively. It is shown that Rashba interaction displays the largest impact of generating a coherence entangled network between the three qubits. The small values of the fractional order has no ability to generate a long lived entanglement in the presences of Rashba interaction and large values of Heisenberg strength.

MSC:

81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
81Qxx General mathematical topics and methods in quantum theory
81Vxx Applications of quantum theory to specific physical systems
Full Text: DOI

References:

[1] Nielsen, M.A., Chuang, I.L.: Quantum Computatation and Quantum Information, (Cambridge University Press, Cambridg
[2] Metwally, N., Entanglement routers via a wireless quantum network based on arbitrary two qubit systems, Phys. Scr., 89, 19, 2014 · doi:10.1088/0031-8949/89/12/125103
[3] Metwally, N., Entanglement and quantum teleportation via decohered tripartite entangled states, Ann. Phy., 351, 704-713, 2014 · Zbl 1360.81072 · doi:10.1016/j.aop.2014.09.019
[4] Vidal, G., Dür, W., Cirac, J.I.: Entanglement Cost of Bipartite Mixed States. Phys. Rev. Lett. 89, 027901 (2002)
[5] Metwally nmetwally, N., Almannaei, A.: Dynamics of three-qubit systems in a noisy environment. Can J. Phys. 94, 2 (2016)
[6] Guo, Y.; Zhang, L., Multipartite entanglement measure and complete monogamy relation, Phys. Rev. A., 101, 2020 · doi:10.1103/PhysRevA.101.032301
[7] Albayrak, E., Thermal entanglement in two-qutrit spin-1 anisotropic Heisenberg model with inhomogeneous magnetic field, Chin. Phys. B., 19, 2010 · doi:10.1088/1674-1056/19/9/090319
[8] Wang, Y.; Wang, D.; Huang, L., Extended negativity measure for multipartite k-nonseparable states, Int. J. Qua. Inf., 14, 01, 2016 · Zbl 1339.81018
[9] Sharma, S-S; Sharma, NK, Classification of multipartite entanglement via negativity fonts, Phys. Rev. A., 85, 2012 · doi:10.1103/PhysRevA.85.042315
[10] Zhang, X., Jing, N., Liu, M., Ma, H.: On monogamy and polygamy relations of multipartite systems Phys. Scr. 98, 035106 (2023)
[11] Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007) · Zbl 1223.81001
[12] Buzek, V.; Konopka, M., Dynamics of open systems governed by the Milburn equation, Phy. Rev. A., 58, 3, 1998 · doi:10.1103/PhysRevA.58.1735
[13] El Anouz, K.; El Allati, A.; Metwally, N.; Obada, AS, The efficiency of fractional channels in the Heisenberg XYZ model, Chaos, Solitons & Fractals., 172, 2023 · doi:10.1016/j.chaos.2023.113581
[14] Lu, L.; Yu, X., Time fractional evolution of the two-level system interacting with light field, Las. Phys. Lett., 14, 2017 · doi:10.1088/1612-202X/aa8bc4
[15] Zu, C.; Gao, Y.; Yu, X., Time fractional evolution of a single quantum state and entangled state, Cha. Soli. Frac., 147, 2021 · doi:10.1016/j.chaos.2021.110930
[16] Naber, M., Time fractional Schr \(\ddot{o}\) dinger equation, J. Math. Phys., 45, 3339, 2004 · Zbl 1071.81035 · doi:10.1063/1.1769611
[17] Zu, C.; Gao, Y.; Yu, X., Time fractional evolution of a single quantum state and entangled state, Cha. Soli. Frac., 147, 2021 · doi:10.1016/j.chaos.2021.110930
[18] Longhi, S.: Fractional Schrödinger equation in optics. Opt. Lett. 40, 6 (2015) · Zbl 1360.81357
[19] Zhang, Y., Liu, X., Belić, M.-R., Zhong, W., Zhang, Y., Xiao, M.: Propagation Dynamics of a Light Beam in a Fractional Schrödinger Equation. Phys. Rev. Lett. 115, 180403 (2015)
[20] Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47, 082104 (2006) · Zbl 1112.81028
[21] Wang, JZ; Ma, J.; Ao, QB; Zhi, H.; Tang, HP, Review on Fractal Analysis of Porous Metal Materials, J. Chem., 2015, 2015 · doi:10.1155/2015/427297
[22] Werlang, T.: Gustavo Rigolin, Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 81, 044101 (2010)
[23] Lahaye, T.; Koch, T.; Fruhlich, B.; Fattori, M.; Metz, J.; Griesmaier, A.; Giovanazzi, S.; Pfau, T., Strong dipolar effects in a quantum ferrofluid, Nature, 448, 672-675, 2007 · doi:10.1038/nature06036
[24] Griesmaier, A.; Stuhler, J.; Koch, T.; Fattori, M.; Pfau, T.; Giovanazzi, S., Comparing contact and dipolar interactions in a Bose-Einstein condensate, Phys. Rev. Lett., 97, 2006 · doi:10.1103/PhysRevLett.97.250402
[25] Kundu, A., Zhang, S.: Dzyaloshinskii-Moriya interaction mediated by spin-polarized band with Rashba spin-orbit coupling. Phys. Rev. B. 92,(2015)
[26] Barnes, S.; Ieda, J.; Maekawa, S., Rashba spin-orbit anisotropy and the electric field control of magnetism, Sci. Rep., 4, 4105, 2014 · doi:10.1038/srep04105
[27] Jungfleisch, MB; Zhang, W.; Sklenar, J.; Jiang, W.; Pearson, JE; Ketterson, JB; Hoffmann, A., Interface-driven spin-torque ferromagnetic resonance by Rashba coupling at the interface between nonmagnetic materials, Phys. Rev. B., 93, 2016 · doi:10.1103/PhysRevB.93.224419
[28] Usachov, D.Y., et al.: Cubic Rashba effect in the surface spin structure of rare-earth ternary materials. Phys. Rev. Lett. 124, 237202 (2020)
[29] Qiang, Z., Xiao-Ping, Z., Qi-Jun, Z., Zhong-Zhou, R.: Entanglement dynamics of a heisenberg chain with dzyaloshinskii- moriya interaction. Chinese Physics B, 18(5), (2009)
[30] Li, Y.C., Chen, X., Muga, J.G. and Sherman, E.Y.: Qubit gates with simultaneous transport in double quantum dots. New J. Phys. 20, 113029 (2018)
[31] Mohammed, A.R., Ahmed, A.H., El-Shahat, T.M. and Metwally, N.: Quantum steering over an entangled network that is generated via dipolar interaction. Physica A: Stat. Mechanics Appl. 584, 126380 (2021) · Zbl 07482528
[32] Wei, T-C; Goldbart, P-M, Geometric measure of entanglement and applications to bipartite and multipartite quantum states, Phys. Rev. A., 68, 2003 · doi:10.1103/PhysRevA.68.042307
[33] Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of Mixed Bipartite Quantum States in Arbitrary Dimensions. Phys. Rev. Lett. 92, 167902 (2004)
[34] Yu, C-S; Song, H-S, Bipartite concurrence and localized coherence, Phys. Rev. A., 80, 2009 · Zbl 1255.81081 · doi:10.1103/PhysRevA.80.022324
[35] Knips, L., Dziewior, J., Kłobus, W., Laskowski, W., Paterek, T., Shadbolt, P.-J., Weinfurter, H., Meinecke, J.-D.A.: Multipartite entanglement analysis from random correlations. npj Quantum Inf 6, 51 (2020)
[36] Liu, Z.; Zeng, P.; Zhou, Y.; Gu, M., Characterizing correlation within multipartite quantum systems via local randomized measurements, Phys. Rev. A., 105, 2022 · doi:10.1103/PhysRevA.105.022407
[37] Peres, A., Separability criterion for density matrices, Phys. Rev. Lett., 77, 1413, 1996 · Zbl 0947.81003 · doi:10.1103/PhysRevLett.77.1413
[38] Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A. 65, 032314 (2002)
[39] Bertini, B.; Klobas, K.; Lu, T-C, Entanglement Negativity and Mutual Information after a Quantum Quench: Exact Link from Space-Time Duality, Phys. Rev. Lett., 129, 2022 · doi:10.1103/PhysRevLett.129.140503
[40] Nimmrichter, S.; Hornberger, K., Macroscopicity of Mechanical Quantum Superposition States, Phys. Rev. Lett., 110, 2013 · doi:10.1103/PhysRevLett.110.160403
[41] El Anouz, K., Onyenegecha, C.P., Opara, A.I., Salah, A. and El Allati, A.: Dynamics of quantum Fisher information and quantum coherence of an interacting two atoms under time-fractional analysis. J. Opt. Soci. Amer. B. 39, 4 (2022)
[42] Baumgratz, T.; Cramer, M.; Plenio, M-B, Quantifying Coherencea, Phys. Rev. Lett., 113, 2014 · doi:10.1103/PhysRevLett.113.140401
[43] Streltsov, A.; Adesso, G.; Plenio, M-B, Colloquium: Quantum coherence as a resource, Rev. Mod. Phys., 89, 2017 · doi:10.1103/RevModPhys.89.041003
[44] Wu, S-M; Zeng, H-S; Cao, H-M, Quantum coherence and distribution of N-partite bosonic fields in noninertial frame, Class. Quantum Grav., 38, 2021 · Zbl 1482.83061 · doi:10.1088/1361-6382/ac1b09
[45] Peng, Y.; Jiang, Y.; Fan, H., Maximally coherent states and coherence-preserving operations, Phys. Rev. A., 93, 2016 · doi:10.1103/PhysRevA.93.032326
[46] Sk, R.; Panigrahi, P-K, Protecting quantum coherence and entanglement in a correlated environment, Physica A., 596, 2022 · Zbl 07511854 · doi:10.1016/j.physa.2022.127129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.