×

Oriented closed polyhedral maps and the Kitaev model. (English) Zbl 07878075

Summary: A kind of combinatorial map, called arrow presentation, is proposed to encode the data of the oriented closed polyhedral complexes \(\Sigma\) on which the Hopf algebraic Kitaev model lives. We develop a theory of arrow presentations which underlines the role of the dual of the double \(\mathcal{D}(\Sigma)^{\ast}\) of \(\Sigma\) as being the Schreier coset graph of the arrow presentation, explains the ribbon structure behind curves on \(\mathcal{D}(\Sigma)^{\ast}\) and facilitates computation of holonomy with values in the algebra of the Kitaev model. In this way, we can prove ribbon operator identities for arbitrary f.d. \(C^{\ast}\)-Hopf algebras and arbitrary oriented closed polyhedral maps. By means of a combinatorial notion of homotopy designed specially for ribbon curves, we can rigorously formulate ”topological invariance” of states created by ribbon operators.

MSC:

81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
16T05 Hopf algebras and their applications
16T30 Connections of Hopf algebras with combinatorics
81T25 Quantum field theory on lattices

References:

[1] Bombin, H. and Martin-Delgado, M., A family of non-{A}belian {K}itaev models on a lattice: topological condensation and confinement, Physical Review B, 78, 11, 115421, 28 pages, (2008) · doi:10.1103/PhysRevB.78.115421
[2] Buchholz, Detlev and Fredenhagen, Klaus, Locality and the structure of particle states, Communications in Mathematical Physics, 84, 1, 1-54, (1982) · Zbl 0498.46061 · doi:10.1007/BF01208370
[3] Buerschaper, Oliver and Mombelli, Juan Mart\'{\i}n and Christandl, Matthias and Aguado, Miguel, A hierarchy of topological tensor network states, Journal of Mathematical Physics, 54, 1, 012201, 46 pages, (2013) · Zbl 1305.81125 · doi:10.1063/1.4773316
[4] Cha, Matthew and Naaijkens, Pieter and Nachtergaele, Bruno, On the stability of charges in infinite quantum spin systems, Communications in Mathematical Physics, 373, 1, 219-264, (2020) · Zbl 1431.81086 · doi:10.1007/s00220-019-03630-1
[5] Yan, Bowen and Chen, Penghua and Cui, Shawn X., Ribbon operators in the generalized {K}itaev quantum double model based on {H}opf algebras, Journal of Physics. A. Mathematical and Theoretical, 55, 18, 185201, 34 pages, (2022) · Zbl 1505.82018 · doi:10.1088/1751-8121/ac552c
[6] Cowtan, Alexander and Majid, Shahn, Quantum double aspects of surface code models, Journal of Mathematical Physics, 63, 4, 042202, 49 pages, (2022) · Zbl 1507.81069 · doi:10.1063/5.0063768
[7] Doplicher, Sergio and Haag, Rudolf and Roberts, John E., Fields, observables and gauge transformations. {I}, Communications in Mathematical Physics, 13, 1-23, (1969) · Zbl 0175.24704 · doi:10.1007/BF01645267
[8] Doplicher, Sergio and Haag, Rudolf and Roberts, John E., Fields, observables and gauge transformations. {II}, Communications in Mathematical Physics, 15, 173-200, (1969) · Zbl 0186.58205 · doi:10.1007/BF01645674
[9] Doplicher, Sergio and Haag, Rudolf and Roberts, John E., Local observables and particle statistics. {I}, Communications in Mathematical Physics, 23, 199-230, (1971) · doi:10.1007/BF01877742
[10] Doplicher, Sergio and Haag, Rudolf and Roberts, John E., Local observables and particle statistics. {II}, Communications in Mathematical Physics, 35, 49-85, (1974) · doi:10.1007/BF01646454
[11] Hirmer, Anna-Katharina and Meusburger, Catherine, Categorical generalizations of quantum double models
[12] Jones, Gareth and Singerman, David, Maps, hypermaps and triangle groups, The {G}rothendieck Theory of Dessins D’enfants ({L}uminy, 1993), London Math. Soc. Lecture Note Ser., 200, 115-145, (1994), Cambridge University Press, Cambridge · Zbl 0833.20045 · doi:10.1017/CBO9780511569302.006
[13] Kitaev, A. Yu., Fault-tolerant quantum computation by anyons, Annals of Physics, 303, 1, 2-30, (2003) · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[14] Lando, Sergei K. and Zvonkin, Alexander K., Graphs on surfaces and their applications, Encyclopaedia Math. Sci., 141, xvi+455, (2004), Springer, Berlin · Zbl 1040.05001 · doi:10.1007/978-3-540-38361-1
[15] Larson, Richard G. and Radford, David E., Semisimple cosemisimple {H}opf algebras, American Journal of Mathematics, 110, 1, 187-195, (1988) · Zbl 0637.16006 · doi:10.2307/2374545
[16] Meusburger, Catherine, Kitaev lattice models as a {H}opf algebra gauge theory, Communications in Mathematical Physics, 353, 1, 413-468, (2017) · Zbl 1460.81064 · doi:10.1007/s00220-017-2860-7
[17] Meusburger, Catherine and Wise, Derek K., Hopf algebra gauge theory on a ribbon graph, Reviews in Mathematical Physics. A Journal for Both Review and Original Research Papers in the Field of Mathematical Physics, 33, 5, 2150016, 93 pages, (2021) · Zbl 1483.16033 · doi:10.1142/S0129055X21500161
[18] Montgomery, Susan, Hopf algebras and their actions on rings, CBMS Reg. Conf. Ser. Math., 82, xiv+238, (1993), American Mathematical Society, Providence, RI · Zbl 0793.16029 · doi:10.1090/cbms/082
[19] Naaijkens, Pieter, Localized endomorphisms in {K}itaev’s toric code on the plane, Reviews in Mathematical Physics. A Journal for Both Review and Original Research Papers in the Field of Mathematical Physics, 23, 4, 347-373, (2011) · Zbl 1220.81165 · doi:10.1142/S0129055X1100431X
[20] Naaijkens, Pieter, Kitaev’s quantum double model from a local quantum physics point of view, Advances in Algebraic Quantum Field Theory, Math. Phys. Stud., 365-395, (2015), Springer, Cham · Zbl 1334.81093
[21] Sweedler, Moss E., Hopf algebras, Math. Lecture Note Ser., vii+336, (1969), W.A. Benjamin, Inc., New York · Zbl 0194.32901
[22] White, Arthur T., Graphs of groups on surfaces. {I}nteractions and models, North-Holland Math. Stud., 188, xiv+363, (2001), North-Holland Publishing Co., Amsterdam · Zbl 1054.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.