×

\(w_{1+ \infty}\) and Carrollian holography. (English) Zbl 07877446

Summary: In a 1 + 2D Carrollian conformal field theory, the Ward identities of the two local fields \(S_0^+\) and \(S_1^+ \), entirely built out of the Carrollian conformal stress-tensor, contain respectively up to the leading and the subleading positive helicity soft graviton theorems in the 1 + 3D asymptotically flat space-time. This work investigates how the subsubleading soft graviton theorem can be encoded into the Ward identity of a Carrollian conformal field \(S_2^+\). The operator product expansion (OPE) \(S_2^+S_2^+\) is constructed using general Carrollian conformal symmetry principles and the OPE commutativity property, under the assumption that any time-independent, non-Identity field that is mutually local with \(S_0^+\), \(S_1^+\), \(S_2^+\) has positive Carrollian scaling dimension. It is found that, for this OPE to be consistent, another local field \(S_3^+\) must automatically exist in the theory. The presence of an infinite tower of local fields \(S_{k \geq 3}^+\) is then revealed iteratively as a consistency condition for the \(S_2^+S_{k-1}^+\) OPE. The general \(S_k^+S_l^+\) OPE is similarly obtained and the symmetry algebra manifest in this OPE is found to be the Kac-Moody algebra of the wedge sub-algebra of \(w_{1+ \infty}\). The Carrollian time-coordinate plays the central role in this purely holographic construction. The 2D Celestial conformally soft graviton primary \(H^k(z, \bar{z})\) is realized to be contained in the Carrollian conformal primary \(S_{1-k}^+(t, z, \bar{z})\). Finally, the existence of the infinite tower of fields \(S_k^+\) is shown to be directly related to an infinity of positive helicity soft graviton theorems.

MSC:

81-XX Quantum theory

References:

[1] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
[2] Susskind, L., The world as a hologram, J. Math. Phys., 36, 6377, 1995 · Zbl 0850.00013 · doi:10.1063/1.531249
[3] S. Pasterski, M. Pate and A.-M. Raclariu, Celestial Holography, in the proceedings of the Snowmass 2021, Seattle, U.S.A., July 17-26 (2022) [arXiv:2111.11392] [INSPIRE].
[4] S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev. D96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].
[5] S. Pasterski, S.-H. Shao and A. Strominger, Gluon Amplitudes as 2d Conformal Correlators, Phys. Rev. D96 (2017) 085006 [arXiv:1706.03917] [INSPIRE].
[6] Bagchi, A.; Basu, R.; Kakkar, A.; Mehra, A., Flat Holography: Aspects of the dual field theory, JHEP, 12, 147, 2016 · Zbl 1390.83081 · doi:10.1007/JHEP12(2016)147
[7] L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, Carrollian Perspective on Celestial Holography, Phys. Rev. Lett.129 (2022) 071602 [arXiv:2202.04702] [INSPIRE].
[8] Donnay, L.; Fiorucci, A.; Herfray, Y.; Ruzziconi, R., Bridging Carrollian and celestial holography, Phys. Rev. D, 107, 126027, 2023 · doi:10.1103/PhysRevD.107.126027
[9] Saha, A., Carrollian approach to 1 + 3D flat holography, JHEP, 06, 051, 2023 · Zbl 07716757 · doi:10.1007/JHEP06(2023)051
[10] Salzer, J., An embedding space approach to Carrollian CFT correlators for flat space holography, JHEP, 10, 084, 2023 · Zbl 07774689 · doi:10.1007/JHEP10(2023)084
[11] Nguyen, K.; West, P., Carrollian Conformal Fields and Flat Holography, Universe, 9, 385, 2023 · doi:10.3390/universe9090385
[12] Weinberg, S., Infrared photons and gravitons, Phys. Rev., 140, B516, 1965 · doi:10.1103/PhysRev.140.B516
[13] F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].
[14] Strominger, A., On BMS Invariance of Gravitational Scattering, JHEP, 07, 152, 2014 · Zbl 1392.81215 · doi:10.1007/JHEP07(2014)152
[15] Kapec, D.; Mitra, P.; Raclariu, A-M; Strominger, A., 2D Stress Tensor for 4D Gravity, Phys. Rev. Lett., 119, 121601, 2017 · doi:10.1103/PhysRevLett.119.121601
[16] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A269 (1962) 21 [INSPIRE]. · Zbl 0106.41903
[17] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A270 (1962) 103 [INSPIRE]. · Zbl 0101.43605
[18] He, T.; Lysov, V.; Mitra, P.; Strominger, A., BMS supertranslations and Weinberg’s soft graviton theorem, JHEP, 05, 151, 2015 · Zbl 1388.83261 · doi:10.1007/JHEP05(2015)151
[19] Barnich, G.; Troessaert, C., Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett., 105, 111103, 2010 · doi:10.1103/PhysRevLett.105.111103
[20] G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoSCNCFG2010 (2010) 010 [arXiv:1102.4632] [INSPIRE].
[21] Barnich, G.; Troessaert, C., BMS charge algebra, JHEP, 12, 105, 2011 · Zbl 1306.83002 · doi:10.1007/JHEP12(2011)105
[22] D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity \(\mathcal{S} \)-matrix, JHEP08 (2014) 058 [arXiv:1406.3312] [INSPIRE].
[23] C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups and BMS symmetry, Class. Quant. Grav.31 (2014) 092001 [arXiv:1402.5894] [INSPIRE]. · Zbl 1291.83084
[24] Duval, C.; Gibbons, GW; Horvathy, PA, Conformal Carroll groups, J. Phys. A, 47, 335204, 2014 · Zbl 1297.83028 · doi:10.1088/1751-8113/47/33/335204
[25] Elvang, H.; Jones, CRT; Naculich, SG, Soft Photon and Graviton Theorems in Effective Field Theory, Phys. Rev. Lett., 118, 231601, 2017 · doi:10.1103/PhysRevLett.118.231601
[26] Laddha, A.; Sen, A., Sub-subleading Soft Graviton Theorem in Generic Theories of Quantum Gravity, JHEP, 10, 065, 2017 · Zbl 1383.83033 · doi:10.1007/JHEP10(2017)065
[27] Zamolodchikov, AB, Infinite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory, Theor. Math. Phys., 65, 1205, 1985 · doi:10.1007/BF01036128
[28] Bagchi, A., Non-Lorentzian Kač-Moody algebras, JHEP, 03, 041, 2023 · Zbl 07690605 · doi:10.1007/JHEP03(2023)041
[29] Klose, T., Double-Soft Limits of Gluons and Gravitons, JHEP, 07, 135, 2015 · Zbl 1388.83281 · doi:10.1007/JHEP07(2015)135
[30] Banerjee, S.; Ghosh, S.; Paul, P., MHV graviton scattering amplitudes and current algebra on the celestial sphere, JHEP, 02, 176, 2021 · doi:10.1007/JHEP02(2021)176
[31] A.B. Zamolodchikov, Physics reviews. Vol. 10, Pt. 4: Conformal field theory and critical phenomena in two-dimensional systems, [INSPIRE].
[32] Saha, A., Intrinsic approach to 1 + 1D Carrollian Conformal Field Theory, JHEP, 12, 133, 2022 · Zbl 1536.81191 · doi:10.1007/JHEP12(2022)133
[33] Donnay, L.; Puhm, A.; Strominger, A., Conformally Soft Photons and Gravitons, JHEP, 01, 184, 2019 · Zbl 1409.81116 · doi:10.1007/JHEP01(2019)184
[34] Puhm, A., Conformally Soft Theorem in Gravity, JHEP, 09, 130, 2020 · doi:10.1007/JHEP09(2020)130
[35] Guevara, A.; Himwich, E.; Pate, M.; Strominger, A., Holographic symmetry algebras for gauge theory and gravity, JHEP, 11, 152, 2021 · Zbl 1521.81144 · doi:10.1007/JHEP11(2021)152
[36] Pate, M.; Raclariu, A-M; Strominger, A.; Yuan, EY, Celestial operator products of gluons and gravitons, Rev. Math. Phys., 33, 2140003, 2021 · Zbl 07450891 · doi:10.1142/S0129055X21400031
[37] Ball, A.; Narayanan, SA; Salzer, J.; Strominger, A., Perturbatively exact w_1+∞asymptotic symmetry of quantum self-dual gravity, JHEP, 01, 114, 2022 · Zbl 1521.81284 · doi:10.1007/JHEP01(2022)114
[38] Chen, B.; Liu, R.; Sun, H.; Zheng, Y-F, Constructing Carrollian field theories from null reduction, JHEP, 11, 170, 2023 · Zbl 07795885 · doi:10.1007/JHEP11(2023)170
[39] C.N. Pope, Lectures on W algebras and W gravity, in the proceedings of the Summer School in High-energy Physics and Cosmology, Trieste, Italy, June 17 - August 09 (1991) [hep-th/9112076] [INSPIRE].
[40] Bakas, I., The Large n Limit of Extended Conformal Symmetries, Phys. Lett. B, 228, 57, 1989 · doi:10.1016/0370-2693(89)90525-X
[41] Strominger, A., w_1+∞Algebra and the Celestial Sphere: Infinite Towers of Soft Graviton, Photon, and Gluon Symmetries, Phys. Rev. Lett., 127, 221601, 2021 · doi:10.1103/PhysRevLett.127.221601
[42] Hamada, Y.; Shiu, G., Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities, Phys. Rev. Lett., 120, 201601, 2018 · doi:10.1103/PhysRevLett.120.201601
[43] Z.-Z. Li, H.-H. Lin and S.-Q. Zhang, Infinite Soft Theorems from Gauge Symmetry, Phys. Rev. D98 (2018) 045004 [arXiv:1802.03148] [INSPIRE].
[44] Banerjee, S., Symmetries of free massless particles and soft theorems, Gen. Rel. Grav., 51, 128, 2019 · Zbl 1430.83008 · doi:10.1007/s10714-019-2609-z
[45] S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].
[46] Banerjee, S.; Pasterski, S., Revisiting the shadow stress tensor in celestial CFT, JHEP, 04, 118, 2023 · Zbl 07694006 · doi:10.1007/JHEP04(2023)118
[47] C. Itzykson and J.B. Zuber, Quantum Field Theory, McGraw-Hill (1980), ISBN 978-0-486-44568-7.
[48] Chen, B.; Liu, R.; Zheng, Y-F, On higher-dimensional Carrollian and Galilean conformal field theories, SciPost Phys., 14, 088, 2023 · Zbl 07902431 · doi:10.21468/SciPostPhys.14.5.088
[49] Strominger, A.; Zhiboedov, A., Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP, 01, 086, 2016 · Zbl 1388.83072 · doi:10.1007/JHEP01(2016)086
[50] Pasterski, S.; Strominger, A.; Zhiboedov, A., New Gravitational Memories, JHEP, 12, 053, 2016 · Zbl 1390.83024 · doi:10.1007/JHEP12(2016)053
[51] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[52] Fotopoulos, A.; Taylor, TR, Primary Fields in Celestial CFT, JHEP, 10, 167, 2019 · Zbl 1427.81127 · doi:10.1007/JHEP10(2019)167
[53] Bekaert, X.; Oblak, B., Massless scalars and higher-spin BMS in any dimension, JHEP, 11, 022, 2022 · Zbl 1536.81109 · doi:10.1007/JHEP11(2022)022
[54] Liu, W-B; Long, J., Symmetry group at future null infinity: Scalar theory, Phys. Rev. D, 107, 126002, 2023 · doi:10.1103/PhysRevD.107.126002
[55] Polyakov, AM, Quantum Gravity in Two-Dimensions, Mod. Phys. Lett. A, 2, 893, 1987 · doi:10.1142/S0217732387001130
[56] Fotopoulos, A.; Stieberger, S.; Taylor, TR; Zhu, B., Extended BMS Algebra of Celestial CFT, JHEP, 03, 130, 2020 · Zbl 1435.83010 · doi:10.1007/JHEP03(2020)130
[57] Banerjee, S.; Ghosh, S.; Gonzo, R., BMS symmetry of celestial OPE, JHEP, 04, 130, 2020 · Zbl 1436.83022 · doi:10.1007/JHEP04(2020)130
[58] S. Banerjee, S. Ghosh and P. Paul, (Chiral) Virasoro invariance of the tree-level MHV graviton scattering amplitudes, JHEP09 (2022) 236 [arXiv:2108.04262] [INSPIRE]. · Zbl 1531.83144
[59] Himwich, E.; Pate, M.; Singh, K., Celestial operator product expansions and w_1+∞symmetry for all spins, JHEP, 01, 080, 2022 · Zbl 1521.81310 · doi:10.1007/JHEP01(2022)080
[60] Banerjee, S.; Ghosh, S.; Samal, SS, Subsubleading soft graviton symmetry and MHV graviton scattering amplitudes, JHEP, 08, 067, 2021 · doi:10.1007/JHEP08(2021)067
[61] Freidel, L.; Pranzetti, D.; Raclariu, A-M, Sub-subleading soft graviton theorem from asymptotic Einstein’s equations, JHEP, 05, 186, 2022 · Zbl 1522.83017 · doi:10.1007/JHEP05(2022)186
[62] Conde, E.; Mao, P., BMS Supertranslations and Not So Soft Gravitons, JHEP, 05, 060, 2017 · Zbl 1380.83199 · doi:10.1007/JHEP05(2017)060
[63] L. Freidel, D. Pranzetti and A.-M. Raclariu, Higher spin dynamics in gravity and w1+∞ celestial symmetries, Phys. Rev. D106 (2022) 086013 [arXiv:2112.15573] [INSPIRE].
[64] Banerjee, S.; Kulkarni, H.; Paul, P., An infinite family of w_1+∞invariant theories on the celestial sphere, JHEP, 05, 063, 2023 · Zbl 07701878 · doi:10.1007/JHEP05(2023)063
[65] Campiglia, M.; Laddha, A., Asymptotic charges in massless QED revisited: A view from Spatial Infinity, JHEP, 05, 207, 2019 · Zbl 1416.81210 · doi:10.1007/JHEP05(2019)207
[66] L.P. de Gioia and A.-M. Raclariu, Celestial Sector in CFT: Conformally Soft Symmetries, arXiv:2303.10037 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.