×

Superselection-resolved entanglement in lattice gauge theories: a tensor network approach. (English) Zbl 07877384

Summary: Lattice gauge theories (LGT) play a central role in modern physics, providing insights into high-energy physics, condensed matter physics, and quantum computation. Due to the nontrivial structure of the Hilbert space of LGT systems, entanglement in such systems is tricky to define. However, when one limits themselves to superselection-resolved entanglement, that is, entanglement corresponding to specific gauge symmetry sectors (commonly denoted as superselection sectors), this problem disappears, and the entanglement becomes well-defined. The study of superselection-resolved entanglement is interesting in LGT for an additional reason: when the gauge symmetry is strictly obeyed, superselection-resolved entanglement becomes the only distillable contribution to the entanglement. In our work, we study the behavior of superselection-resolved entanglement in LGT systems. We employ a tensor network construction for gauge-invariant systems as defined by E. Zohar and M. Burrello [New J. Phys. 18, No. 4, Article ID 043008, 20 p. (2016; doi:10.1088/1367-2630/18/4/043008)] and find that, in a vast range of cases, the leading term in superselection-resolved entanglement depends on the number of corners in the partition – corner-law entanglement. To our knowledge, this is the first case of such a corner-law being observed in any lattice system.

MSC:

81-XX Quantum theory

References:

[1] Zohar, E.; Burrello, M., Building projected entangled pair states with a local gauge symmetry, New J. Phys., 18, 2016 · doi:10.1088/1367-2630/18/4/043008
[2] K.G. Wilson, Confinement of quarks, Phys. Rev. D10 (1974) 2445 [INSPIRE].
[3] J.B. Kogut and L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D11 (1975) 395 [INSPIRE].
[4] J.B. Kogut, An introduction to lattice gauge theory and spin systems, Rev. Mod. Phys.51 (1979) 659 [INSPIRE].
[5] Flavour Lattice Averaging Group (FLAG) collaboration, FLAG review 2021, Eur. Phys. J. C82 (2022) 869 [arXiv:2111.09849] [INSPIRE].
[6] A.Y. Kitaev, Fault tolerant quantum computation by anyons, Annals Phys.303 (2003) 2 [quant-ph/9707021] [INSPIRE]. · Zbl 1012.81006
[7] Fowler, AG; Mariantoni, M.; Martinis, JM; Cleland, AN, Surface codes: towards practical large-scale quantum computation, Phys. Rev. A, 86, 2012 · doi:10.1103/PhysRevA.86.032324
[8] A. Cleland, An introduction to the surface code, SciPost Phys. Lect. Notes49 (2022) 1 [INSPIRE].
[9] A.M. iOlius et al., Decoding algorithms for surface codes, arXiv:2307.14989 [INSPIRE].
[10] Wiese, U-J, Towards quantum simulating QCD, Nucl. Phys. A, 931, 246, 2014 · doi:10.1016/j.nuclphysa.2014.09.102
[11] Zohar, E.; Cirac, JI; Reznik, B., Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices, Rept. Prog. Phys., 79, 2016 · doi:10.1088/0034-4885/79/1/014401
[12] Dalmonte, M.; Montangero, S., Lattice gauge theory simulations in the quantum information era, Contemp. Phys., 57, 388, 2016 · doi:10.1080/00107514.2016.1151199
[13] Bañuls, MC; Cichy, K., Review on novel methods for lattice gauge theories, Rept. Prog. Phys., 83, 2020 · doi:10.1088/1361-6633/ab6311
[14] Bañuls, MC, Simulating lattice gauge theories within quantum technologies, Eur. Phys. J. D, 74, 165, 2020 · doi:10.1140/epjd/e2020-100571-8
[15] Homeier, L., Z_2lattice gauge theories and Kitaev’s toric code: a scheme for analog quantum simulation, Phys. Rev. B, 104, 2021 · doi:10.1103/PhysRevB.104.085138
[16] Zohar, E., Quantum simulation of lattice gauge theories in more than one space dimension — requirements, challenges and methods, Phil. Trans. A. Math. Phys. Eng. Sci., 380, 20210069, 2021
[17] Aidelsburger, M., Cold atoms meet lattice gauge theory, Phil. Trans. Roy. Soc. Lond. A, 380, 20210064, 2021
[18] Klco, N.; Roggero, A.; Savage, MJ, Standard model physics and the digital quantum revolution: thoughts about the interface, Rept. Prog. Phys., 85, 2022 · doi:10.1088/1361-6633/ac58a4
[19] Bauer, CW, Quantum simulation for high-energy physics, PRX Quantum, 4, 2023 · doi:10.1103/PRXQuantum.4.027001
[20] Bauer, CW; Davoudi, Z.; Klco, N.; Savage, MJ, Quantum simulation of fundamental particles and forces, Nature Rev. Phys., 5, 420, 2023 · doi:10.1038/s42254-023-00599-8
[21] Martinez, EA, Real-time dynamics of lattice gauge theories with a few-qubit quantum computer, Nature, 534, 516, 2016 · doi:10.1038/nature18318
[22] Bernien, H., Probing many-body dynamics on a 51-atom quantum simulator, Nature, 551, 579, 2017 · doi:10.1038/nature24622
[23] Kokail, C., Self-verifying variational quantum simulation of lattice models, Nature, 569, 355, 2019 · doi:10.1038/s41586-019-1177-4
[24] Schweizer, C., Floquet approach to Z_2lattice gauge theories with ultracold atoms in optical lattices, Nature Phys., 15, 1168, 2019 · doi:10.1038/s41567-019-0649-7
[25] Mil, A., A scalable realization of local U(1) gauge invariance in cold atomic mixtures, Science, 367, 1128, 2020 · Zbl 1478.81005 · doi:10.1126/science.aaz5312
[26] Yang, B., Observation of gauge invariance in a 71-site Bose-Hubbard quantum simulator, Nature, 587, 392, 2020 · doi:10.1038/s41586-020-2910-8
[27] G. Semeghini et al., Probing topological spin liquids on a programmable quantum simulator, Science374 (2021) abi8794 [arXiv:2104.04119] [INSPIRE].
[28] Z.-Y. Zhou et al., Thermalization dynamics of a gauge theory on a quantum simulator, Science377 (2022) abl6277 [arXiv:2107.13563] [INSPIRE].
[29] Riechert, H., Engineering a U(1) lattice gauge theory in classical electric circuits, Phys. Rev. B, 105, 205141, 2022 · doi:10.1103/PhysRevB.105.205141
[30] Su, G-X, Observation of many-body scarring in a Bose-Hubbard quantum simulator, Phys. Rev. Res., 5, 2023 · doi:10.1103/PhysRevResearch.5.023010
[31] M. Meth et al., Simulating 2D lattice gauge theories on a qudit quantum computer, arXiv:2310.12110 [INSPIRE].
[32] W.-Y. Zhang et al., Observation of microscopic confinement dynamics by a tunable topological θ-angle, arXiv:2306.11794 [INSPIRE].
[33] A. Di Meglio et al., Quantum computing for high-energy physics: state of the art and challenges. Summary of the QC4HEP working group, arXiv:2307.03236 [INSPIRE].
[34] J.C. Halimeh et al., Cold-atom quantum simulators of gauge theories, arXiv:2310.12201 [INSPIRE].
[35] Casini, H.; Huerta, M.; Rosabal, JA, Remarks on entanglement entropy for gauge fields, Phys. Rev. D, 89, 2014 · doi:10.1103/PhysRevD.89.085012
[36] D. Radicevic, Notes on entanglement in Abelian gauge theories, arXiv:1404.1391 [INSPIRE].
[37] Donnelly, W.; Wall, AC, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett., 114, 111603, 2015 · doi:10.1103/PhysRevLett.114.111603
[38] Ghosh, S.; Soni, RM; Trivedi, SP, On the entanglement entropy for gauge theories, JHEP, 09, 069, 2015 · Zbl 1388.81438 · doi:10.1007/JHEP09(2015)069
[39] Huang, K-W, Central charge and entangled gauge fields, Phys. Rev. D, 92, 2015 · doi:10.1103/PhysRevD.92.025010
[40] Radičević, Ð., Entanglement in weakly coupled lattice gauge theories, JHEP, 04, 163, 2016
[41] Donnelly, W.; Wall, AC, Geometric entropy and edge modes of the electromagnetic field, Phys. Rev. D, 94, 104053, 2016 · doi:10.1103/PhysRevD.94.104053
[42] Ma, C-T, Entanglement with centers, JHEP, 01, 070, 2016 · Zbl 1388.81061 · doi:10.1007/JHEP01(2016)070
[43] Van Acoleyen, K., The entanglement of distillation for gauge theories, Phys. Rev. Lett., 117, 131602, 2016 · doi:10.1103/PhysRevLett.117.131602
[44] Pretko, M.; Senthil, T., Entanglement entropy of U(1) quantum spin liquids, Phys. Rev. B, 94, 125112, 2016 · doi:10.1103/PhysRevB.94.125112
[45] Pretko, M., On the entanglement entropy of Maxwell theory: a condensed matter perspective, JHEP, 12, 102, 2018 · Zbl 1405.81089 · doi:10.1007/JHEP12(2018)102
[46] N. Laflorencie and S. Rachel, Spin-resolved entanglement spectroscopy of critical spin chains and Luttinger liquids, J. Phys. A2014 (2014) P11013 [INSPIRE]. · Zbl 1456.81080
[47] Goldstein, M.; Sela, E., Symmetry-resolved entanglement in many-body systems, Phys. Rev. Lett., 120, 200602, 2018 · doi:10.1103/PhysRevLett.120.200602
[48] Cornfeld, E.; Goldstein, M.; Sela, E., Imbalance entanglement: symmetry decomposition of negativity, Phys. Rev. A, 98, 2018 · doi:10.1103/PhysRevA.98.032302
[49] Xavier, JC; Alcaraz, FC; Sierra, G., Equipartition of the entanglement entropy, Phys. Rev. B, 98, 2018 · doi:10.1103/PhysRevB.98.041106
[50] Parez, G.; Bonsignori, R.; Calabrese, P., Quasiparticle dynamics of symmetry-resolved entanglement after a quench: examples of conformal field theories and free fermions, Phys. Rev. B, 103, 2021 · doi:10.1103/PhysRevB.103.L041104
[51] Laflorencie, N., Quantum entanglement in condensed matter systems, Phys. Rept., 646, 1, 2016 · doi:10.1016/j.physrep.2016.06.008
[52] Bonsignori, R.; Ruggiero, P.; Calabrese, P., Symmetry resolved entanglement in free fermionic systems, J. Phys. A, 52, 475302, 2019 · Zbl 1509.81063 · doi:10.1088/1751-8121/ab4b77
[53] Murciano, S.; Di Giulio, G.; Calabrese, P., Entanglement and symmetry resolution in two dimensional free quantum field theories, JHEP, 08, 073, 2020 · Zbl 1454.81137 · doi:10.1007/JHEP08(2020)073
[54] Murciano, S.; Di Giulio, G.; Calabrese, P., Symmetry resolved entanglement in gapped integrable systems: a corner transfer matrix approach, SciPost Phys., 8, 046, 2020 · doi:10.21468/SciPostPhys.8.3.046
[55] Horváth, DX; Calabrese, P., Symmetry resolved entanglement in integrable field theories via form factor bootstrap, JHEP, 11, 131, 2020 · Zbl 1456.81237 · doi:10.1007/JHEP11(2020)131
[56] Horváth, DX; Capizzi, L.; Calabrese, P., U(1) symmetry resolved entanglement in free 1 + 1 dimensional field theories via form factor bootstrap, JHEP, 05, 197, 2021 · Zbl 1466.81050 · doi:10.1007/JHEP05(2021)197
[57] L. Capizzi et al., Symmetry resolved entanglement of excited states in quantum field theory. Part I. Free theories, twist fields and qubits, JHEP12 (2022) 127 [arXiv:2203.12556] [INSPIRE].
[58] Castro-Alvaredo, OA; Mazzoni, M., Two-point functions of composite twist fields in the Ising field theory, J. Phys. A, 56, 124001, 2023 · Zbl 1520.81092 · doi:10.1088/1751-8121/acbe82
[59] Fossati, M.; Ares, F.; Calabrese, P., Symmetry-resolved entanglement in critical non-Hermitian systems, Phys. Rev. B, 107, 205153, 2023 · doi:10.1103/PhysRevB.107.205153
[60] Monkman, K.; Sirker, J., Operational entanglement of symmetry-protected topological edge states, Phys. Rev. Res., 2, 2020 · doi:10.1103/PhysRevResearch.2.043191
[61] Cornfeld, E.; Landau, LA; Shtengel, K.; Sela, E., Entanglement spectroscopy of non-Abelian anyons: reading off quantum dimensions of individual anyons, Phys. Rev. B, 99, 115429, 2019 · doi:10.1103/PhysRevB.99.115429
[62] Azses, D.; Sela, E., Symmetry-resolved entanglement in symmetry-protected topological phases, Phys. Rev. B, 102, 235157, 2020 · doi:10.1103/PhysRevB.102.235157
[63] Di Giulio, G., On the boundary conformal field theory approach to symmetry-resolved entanglement, SciPost Phys. Core, 6, 049, 2023 · doi:10.21468/SciPostPhysCore.6.3.049
[64] Calabrese, P.; Dubail, J.; Murciano, S., Symmetry-resolved entanglement entropy in Wess-Zumino-Witten models, JHEP, 10, 067, 2021 · Zbl 1476.81109 · doi:10.1007/JHEP10(2021)067
[65] Murciano, S.; Calabrese, P.; Alba, V., Symmetry-resolved entanglement in fermionic systems with dissipation, J. Stat. Mech., 2311, 113102, 2023 · Zbl 07919347 · doi:10.1088/1742-5468/ad0224
[66] Horváth, DX; Calabrese, P.; Castro-Alvaredo, OA, Branch point twist field form factors in the sine-Gordon model II: composite twist fields and symmetry resolved entanglement, SciPost Phys., 12, 088, 2022 · doi:10.21468/SciPostPhys.12.3.088
[67] Ares, F.; Calabrese, P.; Di Giulio, G.; Murciano, S., Multi-charged moments of two intervals in conformal field theory, JHEP, 09, 051, 2022 · Zbl 1531.81193 · doi:10.1007/JHEP09(2022)051
[68] Feldman, N.; Goldstein, M., Dynamics of charge-resolved entanglement after a local quench, Phys. Rev. B, 100, 235146, 2019 · doi:10.1103/PhysRevB.100.235146
[69] A. Lukin et al., Probing entanglement in a many-body-localized system, Science364 (2019) 256.
[70] Fraenkel, S.; Goldstein, M., Symmetry resolved entanglement: exact results in 1D and beyond, J. Stat. Mech., 2003, 2020 · Zbl 1456.81064 · doi:10.1088/1742-5468/ab7753
[71] G. Parez et al., Exact quench dynamics of symmetry resolved entanglement in a free fermion chain, J. Stat. Mech.2109 (2021) 093102 [Erratum ibid.2212 (2022) 129901] [arXiv:2106.13115] [INSPIRE]. · Zbl 1539.82158
[72] Vitale, V., Symmetry-resolved dynamical purification in synthetic quantum matter, SciPost Phys., 12, 106, 2022 · doi:10.21468/SciPostPhys.12.3.106
[73] Fraenkel, S.; Goldstein, M., Entanglement measures in a nonequilibrium steady state: exact results in one dimension, SciPost Phys., 11, 085, 2021 · doi:10.21468/SciPostPhys.11.4.085
[74] Scopa, S.; Horváth, DX, Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench, J. Stat. Mech., 2208, 2022 · Zbl 1539.82133 · doi:10.1088/1742-5468/ac85eb
[75] Oblak, B.; Regnault, N.; Estienne, B., Equipartition of entanglement in quantum Hall states, Phys. Rev. B, 105, 115131, 2022 · doi:10.1103/PhysRevB.105.115131
[76] Tan, MT; Ryu, S., Particle number fluctuations, Rényi entropy, and symmetry-resolved entanglement entropy in a two-dimensional Fermi gas from multidimensional bosonization, Phys. Rev. B, 101, 235169, 2020 · doi:10.1103/PhysRevB.101.235169
[77] Estienne, B.; Ikhlef, Y.; Morin-Duchesne, A., Finite-size corrections in critical symmetry-resolved entanglement, SciPost Phys., 10, 054, 2021 · doi:10.21468/SciPostPhys.10.3.054
[78] Bertini, B., Nonequilibrium full counting statistics and symmetry-resolved entanglement from space-time duality, Phys. Rev. Lett., 131, 140401, 2023 · doi:10.1103/PhysRevLett.131.140401
[79] B. Bertini et al., Dynamics of charge fluctuations from asymmetric initial states, arXiv:2306.12404 [INSPIRE].
[80] Horvath, DX; Fraenkel, S.; Scopa, S.; Rylands, C., Charge-resolved entanglement in the presence of topological defects, Phys. Rev. B, 108, 165406, 2023 · doi:10.1103/PhysRevB.108.165406
[81] M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading, MA, U.S.A. (1995) [INSPIRE].
[82] A. Altland and B. Simons, Condensed matter field theory, Cambridge University Press, Cambridge, U.K. (2023) [doi:10.1017/9781108781244] [INSPIRE]. · Zbl 1522.81156
[83] E. Fradkin, Field theories of condensed matter physics, Cambridge University Press, Cambridge, U.K. (2013) [doi:10.1017/cbo9781139015509]. · Zbl 1278.82001
[84] C.V. Kraus, N. Schuch, F. Verstraete and J.I. Cirac, Fermionic projected entangled pair states, Phys. Rev. A81 (2010) 052338 [INSPIRE].
[85] Tagliacozzo, L.; Vidal, G., Entanglement renormalization and gauge symmetry, Phys. Rev. B, 83, 115127, 2011 · doi:10.1103/PhysRevB.83.115127
[86] Haegeman, J., Gauging quantum states: from global to local symmetries in many-body systems, Phys. Rev. X, 5, 2015
[87] Zohar, E.; Burrello, M.; Wahl, T.; Cirac, JI, Fermionic projected entangled pair states and local U(1) gauge theories, Annals Phys., 363, 385, 2015 · Zbl 1360.81350 · doi:10.1016/j.aop.2015.10.009
[88] Zohar, E.; Wahl, TB; Burrello, M.; Cirac, JI, Projected entangled pair states with non-Abelian gauge symmetries: an SU(2) study, Annals Phys., 374, 84, 2016 · Zbl 1377.81030 · doi:10.1016/j.aop.2016.08.008
[89] Zohar, E.; Cirac, JI, Combining tensor networks with Monte Carlo methods for lattice gauge theories, Phys. Rev. D, 97, 2018 · doi:10.1103/PhysRevD.97.034510
[90] Tschirsich, F.; Montangero, S.; Dalmonte, M., Phase diagram and conformal string excitations of square ice using gauge invariant matrix product states, SciPost Phys., 6, 028, 2019 · doi:10.21468/SciPostPhys.6.3.028
[91] Emonts, P.; Zohar, E., Gauss law, minimal coupling and fermionic PEPS for lattice gauge theories, SciPost Phys. Lect. Notes, 12, 1, 2020
[92] Emonts, P.; Bañuls, MC; Cirac, I.; Zohar, E., Variational Monte Carlo simulation with tensor networks of a pure Z_3gauge theory in (2 + 1)d, Phys. Rev. D, 102, 2020 · doi:10.1103/PhysRevD.102.074501
[93] Montangero, S.; Rico, E.; Silvi, P., Loop-free tensor networks for high-energy physics, Phil. Trans. A. Math. Phys. Eng. Sci., 380, 20210065, 2021
[94] González-Cuadra, D.; Tagliacozzo, L.; Lewenstein, M.; Bermudez, A., Robust topological order in fermionic Z_2gauge theories: from Aharonov-Bohm instability to soliton-induced deconfinement, Phys. Rev. X, 10, 2020
[95] Felser, T.; Silvi, P.; Collura, M.; Montangero, S., Two-dimensional quantum-link lattice quantum electrodynamics at finite density, Phys. Rev. X, 10, 2020
[96] N. Schuch, M.M. Wolf, F. Verstraete and J.I. Cirac, Computational complexity of projected entangled pair states, Phys. Rev. Lett.98 (2007) 140506 [INSPIRE]. · Zbl 1228.81134
[97] F. Verstraete and J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, cond-mat/0407066 [INSPIRE].
[98] J. Jordan et al., Classical simulation of infinite-size quantum lattice systems in two spatial dimensions, Phys. Rev. Lett.101 (2008) 250602 [cond-mat/0703788] [INSPIRE].
[99] Cirac, JI; Perez-Garcia, D.; Schuch, N.; Verstraete, F., Matrix product states and projected entangled pair states: concepts, symmetries, theorems, Rev. Mod. Phys., 93, 2021 · doi:10.1103/RevModPhys.93.045003
[100] F. Verstraete, M.M. Wolf, D. Perez-Garcia and J.I. Cirac, Criticality, the area law, and the computational power of PEPS, Phys. Rev. Lett.96 (2006) 220601 [quant-ph/0601075] [INSPIRE]. · Zbl 1228.81096
[101] Haferkamp, J.; Hangleiter, D.; Eisert, J.; Gluza, M., Contracting projected entangled pair states is average-case hard, Phys. Rev. Res., 2, 2020 · doi:10.1103/PhysRevResearch.2.013010
[102] J. Jordan et al., Classical simulation of infinite-size quantum lattice systems in two spatial dimensions, Phys. Rev. Lett.101 (2008) 250602 [cond-mat/0703788] [INSPIRE].
[103] T. Nishino and K. Okunishi, Corner transfer matrix renormalization group method, J. Phys. Soc. Jpn.65 (1996) 891. · Zbl 1057.82508
[104] R. Orús and G. Vidal, Simulation of two-dimensional quantum systems on an infinite lattice revisited: corner transfer matrix for tensor contraction, Phys. Rev. B80 (2009) 094403 [INSPIRE].
[105] R. Orús, Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems, Phys. Rev. B85 (2012) 205117 [arXiv:1112.4101] [INSPIRE].
[106] P. Corboz, Improved energy extrapolation with infinite projected entangled-pair states applied to the two-dimensional Hubbard model, Phys. Rev. B93 (2016) 045116.
[107] P. Corboz, T.M. Rice and M. Troyer, Competing states in the t-J model: uniform d-wave state versus stripe state, Phys. Rev. Lett.113 (2014) 046402 [INSPIRE].
[108] H.J. Liao et al., Gapless spin-liquid ground state in the S = 1/2 Kagome antiferromagnet, Phys. Rev. Lett.118 (2017) 137202.
[109] T. Picot, M. Ziegler, R. Orús and D. Poilblanc, Spin-S Kagome quantum antiferromagnets in a field with tensor networks, Phys. Rev. B93 (2016) 060407.
[110] Kshetrimayum, A.; Picot, T.; Orús, R.; Poilblanc, D., Spin-1/2 kagome XXZ model in a field: competition between lattice nematic and solid orders, Phys. Rev. B, 94, 235146, 2016 · doi:10.1103/PhysRevB.94.235146
[111] A. Kshetrimayum, C. Balz, B. Lake and J. Eisert, Tensor network investigation of the double layer Kagome compound Ca_10Cr_7O_28, Annals Phys.421 (2020) 168292.
[112] C. Boos et al., Competition between intermediate plaquette phases in SrCu_2(BO_3)_2under pressure, Phys. Rev. B100 (2019) 140413 [arXiv:1903.07887].
[113] P. Czarnik, L. Cincio and J. Dziarmaga, Projected entangled pair states at finite temperature: imaginary time evolution with ancillas, Phys. Rev. B86 (2012) 245101.
[114] Czarnik, P.; Dziarmaga, J., Variational approach to projected entangled pair states at finite temperature, Phys. Rev. B, 92, 2015 · doi:10.1103/PhysRevB.92.035152
[115] A. Kshetrimayum, M. Rizzi, J. Eisert and R. Orús, Tensor network annealing algorithm for two-dimensional thermal states, Phys. Rev. Lett.122 (2019) 070502.
[116] P. Czarnik, A. Francuz and J. Dziarmaga, Tensor network simulation of the Kitaev-Heisenberg model at finite temperature, Phys. Rev. B100 (2019) 165147.
[117] P. Czarnik, M.M. Rams, P. Corboz and J. Dziarmaga, Tensor network study of the m = 1/2 magnetization plateau in the Shastry-Sutherland model at finite temperature, Phys. Rev. B103 (2021) 075113 [arXiv:2012.05265].
[118] S. Mondal, A. Kshetrimayum and T. Mishra, Two-body repulsive bound pairs in a multibody interacting Bose-Hubbard model, Phys. Rev. A102 (2020) 023312.
[119] A. Kshetrimayum, H. Weimer and R. Orús, A simple tensor network algorithm for two-dimensional steady states, Nature Commun.8 (2017) 1291.
[120] P. Czarnik, J. Dziarmaga and P. Corboz, Time evolution of an infinite projected entangled pair state: an efficient algorithm, Phys. Rev. B99 (2019) 035115.
[121] C. Hubig and J.I. Cirac, Time-dependent study of disordered models with infinite projected entangled pair states, SciPost Phys.6 (2019) 31.
[122] A. Kshetrimayum, M. Goihl and J. Eisert, Time evolution of many-body localized systems in two spatial dimensions, Phys. Rev. B102 (2020) 235132.
[123] A. Kshetrimayum, M. Goihl, D.M. Kennes and J. Eisert, Quantum time crystals with programmable disorder in higher dimensions, Phys. Rev. B103 (2021) 224205.
[124] J. Dziarmaga, Time evolution of an infinite projected entangled pair state: neighborhood tensor update, Phys. Rev. B104 (2021) 094411.
[125] Kaneko, R.; Danshita, I., Tensor-network study of correlation-spreading dynamics in the two-dimensional Bose-Hubbard model, Commun. Phys., 5, 65, 2022 · doi:10.1038/s42005-022-00848-9
[126] M.M. Wilde, From classical to quantum shannon theory, Cambridge University Press, Cambridge, U.K. (2016) [doi:10.1017/9781316809976.001] [arXiv:1106.1445] [INSPIRE].
[127] S.J. van Enk and C.W.J. Beenakker, Measuring Trρ^non single copies of ρ using random measurements, Phys. Rev. Lett.108 (2012) 110503 [INSPIRE].
[128] A.J. Daley, H. Pichler, J. Schachenmayer and P. Zoller, Measuring entanglement growth in quench dynamics of bosons in an optical lattice, Phys. Rev. Lett.109 (2012) 020505 [INSPIRE].
[129] H. Pichler et al., Thermal versus entanglement entropy: a measurement protocol for fermionic atoms with a quantum gas microscope, New J. Phys.15 (2013) 063003. · Zbl 1451.81101
[130] Islam, R., Measuring entanglement entropy through the interference of quantum many-body twins, Nature, 528, 77, 2015 · doi:10.1038/nature15750
[131] Pichler, H., Measurement protocol for the entanglement spectrum of cold atoms, Phys. Rev. X, 6, 2016
[132] T. Brydges et al., Probing Rényi entanglement entropy via randomized measurements, Science364 (2019) aau4963 [INSPIRE].
[133] A. Elben et al., Rényi entropies from random quenches in atomic Hubbard and spin models, Phys. Rev. Lett.120 (2018) 050406 [INSPIRE].
[134] B. Vermersch et al., Unitary n-designs via random quenches in atomic Hubbard and spin models: application to the measurement of Rényi entropies, Phys. Rev. A97 (2018) 023604 [INSPIRE].
[135] A. Elben, B. Vermersch, C.F. Roos and P. Zoller, Statistical correlations between locally randomized measurements: a toolbox for probing entanglement in many-body quantum states, Phys. Rev. A99 (2019) 052323 [INSPIRE].
[136] Cornfeld, E.; Sela, E.; Goldstein, M., Measuring fermionic entanglement: entropy, negativity, and spin structure, Phys. Rev. A, 99, 2019 · doi:10.1103/PhysRevA.99.062309
[137] W.-H. Zhang et al., Experimental optimal verification of entangled states using local measurements, Phys. Rev. Lett.125 (2020) 030506.
[138] L. Knips et al., Multipartite entanglement analysis from random correlations, npj Quantum Inf.6 (2020) 51 [INSPIRE].
[139] Feldman, N.; Kshetrimayum, A.; Eisert, J.; Goldstein, M., Entanglement estimation in tensor network states via sampling, PRX Quantum, 3, 2022 · doi:10.1103/PRXQuantum.3.030312
[140] Knaute, J.; Feuerstein, M.; Zohar, E., Entanglement and confinement in lattice gauge theory tensor networks, JHEP, 02, 174, 2024 · Zbl 07837548 · doi:10.1007/JHEP02(2024)174
[141] Schollwöck, U., The density-matrix renormalization group in the age of matrix product states, Annals Phys., 326, 96, 2011 · Zbl 1213.81178 · doi:10.1016/j.aop.2010.09.012
[142] M.P. Zaletel and F. Pollmann, Isometric tensor network states in two dimensions, Phys. Rev. Lett.124 (2020) 037201 [INSPIRE].
[143] Emonts, P., Finding the ground state of a lattice gauge theory with fermionic tensor networks: a 2 + 1D Z_2demonstration, Phys. Rev. D, 107, 2023 · doi:10.1103/PhysRevD.107.014505
[144] Zohar, E., Wilson loops and area laws in lattice gauge theory tensor networks, Phys. Rev. Res., 3, 2021 · doi:10.1103/PhysRevResearch.3.033179
[145] Zohar, E.; Burrello, M., Formulation of lattice gauge theories for quantum simulations, Phys. Rev. D, 91, 2015 · doi:10.1103/PhysRevD.91.054506
[146] Buividovich, PV; Polikarpov, MI, Entanglement entropy in gauge theories and the holographic principle for electric strings, Phys. Lett. B, 670, 141, 2008 · doi:10.1016/j.physletb.2008.10.032
[147] Donnelly, W., Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D, 85, 2012 · doi:10.1103/PhysRevD.85.085004
[148] Aoki, S., On the definition of entanglement entropy in lattice gauge theories, JHEP, 06, 187, 2015 · Zbl 1388.81023 · doi:10.1007/JHEP06(2015)187
[149] Soni, RM; Trivedi, SP, Aspects of entanglement entropy for gauge theories, JHEP, 01, 136, 2016 · Zbl 1388.81088 · doi:10.1007/JHEP01(2016)136
[150] Parez, G.; Bonsignori, R.; Calabrese, P., Quasiparticle dynamics of symmetry-resolved entanglement after a quench: examples of conformal field theories and free fermions, Phys. Rev. B, 103, 2021 · doi:10.1103/PhysRevB.103.L041104
[151] Zhao, S.; Northe, C.; Weisenberger, K.; Meyer, R., Charged moments in W_3higher spin holography, JHEP, 05, 166, 2022 · Zbl 1522.81432 · doi:10.1007/JHEP05(2022)166
[152] Foligno, A.; Murciano, S.; Calabrese, P., Entanglement resolution of free Dirac fermions on a torus, JHEP, 03, 096, 2023 · Zbl 07690660 · doi:10.1007/JHEP03(2023)096
[153] Ghasemi, M., Universal thermal corrections to symmetry-resolved entanglement entropy and full counting statistics, JHEP, 05, 209, 2023 · Zbl 07702024 · doi:10.1007/JHEP05(2023)209
[154] Kusuki, Y.; Murciano, S.; Ooguri, H.; Pal, S., Symmetry-resolved entanglement entropy, spectra & boundary conformal field theory, JHEP, 11, 216, 2023 · Zbl 07795931 · doi:10.1007/JHEP11(2023)216
[155] Orús, R.; Wei, T-C; Buerschaper, O.; García-Saez, A., Topological transitions from multipartite entanglement with tensor networks: a procedure for sharper and faster characterization, Phys. Rev. Lett., 113, 257202, 2014 · doi:10.1103/PhysRevLett.113.257202
[156] Y.-J. Liu, K. Shtengel and F. Pollmann, Topological quantum phase transitions in 2D isometric tensor networks, arXiv:2312.05079 [INSPIRE].
[157] W.-T. Xu, M. Knap and F. Pollmann, Entanglement of gauge theories: from the toric code to the Z_2lattice gauge Higgs model, arXiv:2311.16235 [INSPIRE].
[158] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett.91 (2003) 147902 [INSPIRE].
[159] G. Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial dimension, Phys. Rev. Lett.98 (2007) 070201 [cond-mat/0605597] [INSPIRE].
[160] R. Orús and G. Vidal, Infinite time-evolving block decimation algorithm beyond unitary evolution, Phys. Rev. B78 (2008) 155117 [INSPIRE].
[161] C. Castelnovo and C. Chamon, Quantum topological phase transition at the microscopic level, Phys. Rev. B77 (2008) 054433.
[162] S. Trebst et al., Breakdown of a topological phase: quantum phase transition in a loop gas model with tension, Phys. Rev. Lett.98 (2007) 070602 [cond-mat/0609048] [INSPIRE].
[163] Schuch, N.; Poilblanc, D.; Cirac, JI; Pérez-García, D., Topological order in the projected entangled-pair states formalism: transfer operator and boundary Hamiltonians, Phys. Rev. Lett., 111, 2013 · doi:10.1103/PhysRevLett.111.090501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.