×

The best possible constants approach for Wilker-Cusa-Huygens inequalities via stratification. (English) Zbl 07877085

Summary: In this paper, we generalize Christinel Mortici’s results on Wilker-Cusa-Huygens inequalities using stratified families of functions and SimTheP – a system for automated proving of MTP inequalities.

MSC:

26D05 Inequalities for trigonometric functions and polynomials
41A44 Best constants in approximation theory
68V15 Theorem proving (automated and interactive theorem provers, deduction, resolution, etc.)

References:

[1] C. Mortici: The natural approach of Wilker-Cusa-Huygens inequalities, Math. In-equal. Appl. 14:3 (2011), 535-541. · Zbl 1222.26020
[2] B. Malešević, B. Mihailović: A Minimax Approximant in the Theory of Analytical Inequalities, Appl. Anal. Discrete Math. 15:2 (2021), 486-509. · Zbl 1499.26061
[3] B. Malešević, M. Makragić: A Method for Proving Some Inequalities on Mixed Trigonometric Polynomial Functions, J. Math. Inequal. 10:3 (2016), 849-876. · Zbl 1351.26030
[4] B. Malešević, T. Lutovac, B. Banjac: One Method for Proving Some Classes of Exponential Analytical Inequalities, Filomat 32:20 (2018), 6921-6925. · Zbl 1499.26060
[5] B. Malešević, M. Mićović: Exponential Polynomials and Stratification in the Theory of Analytic Inequalities, Journal of Science and Arts 23:3 (2023), 659-670.
[6] M. Mićović, B. Malešević: Jordan-Type Inequalities and Stratification, Axioms 13:4, 262 (2024), 1-25.
[7] B. Malešević, D. Jovanović: Frame’s Types of Inequalities and Stratification, Cubo. 26:1 (2024), 1-19. · Zbl 07834643
[8] B. Malešević, B. Mihailović, M. Nenezić Jović, L. Milinković: Some minimax approximants of D’Aurizio trigonometric inequalities, HAL (Preprint) (2022), 1-9, hal-03550277.
[9] B. Yu, B. Dong: A Hybrid Polynomial System Solving Method for Mixed Trigono-metric Polynomial Systems, SIAM J. Numer. Anal. 46:3 (2008) 1503-1518. · Zbl 1168.65025
[10] S. Chen, Z. Liu: Automated proving of trigonometric function inequalities using Taylor expansion, Journal of Systems Science and Mathematical Sciences 36:8 (2016), 1339-1348. (in Chinese) · Zbl 1374.68488
[11] S. Chen, Z. Liu: Automated proof of mixed trigonometric-polynomial inequalities, J. Symbolic Comput. 101 (2020), 318-329. · Zbl 1444.68284
[12] D. S. Mitrinović: Analytic inequalities, Springer-Verlag, 1970. · Zbl 0199.38101
[13] G. Milovanović, M. Rassias (editors): Analytic Number Theory, Approximation Theory and Special functions, Springer 2014, Chapter: G.D. Anderson, M. Vuorinen, X. Zhang: Topics in Special Functions III, 297-345. · Zbl 1286.00055
[14] M. Makragić: On trigonometric polynomial ring with applications in the theory of analytic inequalities, Faculty of Mathematics, Belgrade 2018, Ph.D. thesis in Serbian, see link of National Repository of Dissertations in Serbia https://nardus.mpn.gov.rs/ and mathgenealogy link https://www.mathgenealogy.org/id.php?id=239436
[15] B. Banjac: System for automatic proving of some classes of analytic inequalities, School of Electrical Engineering, Belgrade 2019, Ph.D. thesis in Serbian, see link of National Repository of Dissertations in Serbia https://nardus.mpn.gov.rs/ and math-genealogy link https://www.mathgenealogy.org/id.php?id=248798
[16] M. Nenezić Jović: Stratified Families of Functions in the Theory of Analytical Inequalities With Applications, School of Electrical Engineering, Belgrade 2023, Ph.D. thesis in Serbian, see link of National Repository of Dissertations in Serbia https://nardus.mpn.gov.rs/ and mathgenealogy link https://www.mathgenealogy.org/id.php?id=307785
[17] B. Malešević: One Method for Proving Inequalities by Computer, J. Inequal. Appl. 2007 (2007), 1-8. · Zbl 1133.26320
[18] B. Banjac, M. Makragić, B. Malešević: Some Notes on a Method for Proving Inequalities by Computer, Results. Math. 69 (2016), 161-176. · Zbl 1332.41008
[19] B. Malešević, B. Banjac: Automated Proving Mixed Trigonometric Polynomial Inequalities, Proceedings of 27th TELFOR conference, Serbia, Belgrade, November 26-27, 2019.
[20] B. Malešević, B. Banjac: One method for proving polynomial inequalities with real coefficients, Proceedings of 28th TELFOR conference, Serbia, Belgrade, November 24-25, 2020.
[21] N. Cutland: Computalibity -an introduction to recursive funtion theory, Cambridge University Press 1980. · Zbl 0448.03029
[22] J.C.F. Sturm: Mémoire sur la résolution des équations numériques, Bulletin des Sciences de Ferussac 11 (1829), 419-425.
[23] B. Malešević, B. Banjac, V. Šešum Čavić, N. Korolija: One algorithm for test-ing annulling of mixed trigonometric polynomial functions on boundary points, Pro-ceedings of 30th TELFOR conference, Serbia, Belgrade, November 15-16, 2022.
[24] H. Alzer, M. K. Kwong: A refinement of Vietoris’ inequality for cosine polynomials, Anal. Appl. (Singap.) 14:5 (2016), 615-629. · Zbl 1345.26022
[25] H. Alzer, M. K. Kwong: On Fejér’s inequalities for the Legendre polynomials, Math. Nachr. 290:17-18 (2017), 2740-2754. · Zbl 1381.33013
[26] H. Alzer, M. K. Kwong: On two trigonometric inequalities of Askey and Steinig, New York J. Math. 26 (2020), 28-36. · Zbl 1431.26011
[27] H. Alzer, M. K. Kwong: Inequalities for trigonometric sums, J. Anal. (2024)
[28] M. J. Cloud, B. C. Drachman, L. P. Lebedev: Inequalities with Applications to Engineering, Springer 2014. · Zbl 1295.26002
[29] S. Chen, X. Ge: A solution to an open problem for Wilker-type inequalities, J. Math. Inequal. 15:1 (2021), 59-65. · Zbl 1468.26009
[30] F. Qi, D.-W. Niu, B.-N. Guo: Refinements, Generalizations, and Applications of Jordan’s Inequality and Related Problems, J. Inequal. Appl. 2009 (2009), 1-52. · Zbl 1175.26048
[31] B. A. Bhayo, J. Sándor: On classical inequalities of trigonometric and hyperbolic functions, arXiv (Preprint) (2014), 1-59, arXiv:1405.0934.
[32] M. Nenezić, B. Malešević, C. Mortici: New approximations of some expressions involving trigonometric functions, Appl. Math. Comput. 283 (2016), 299-315. · Zbl 1410.26025
[33] B. Malešević, M. Nenezić, L. Zhu, B. Banjac, M. Petrović: Some new estimates of precision of Cusa-Huygens and Huygens approximations, Appl. Anal. Discrete Math. 15:1 (2021), 243-259. · Zbl 1499.42010
[34] L. Zhu, M. Nenezić: New approximation inequalities for circular functions, J. In-equal. Appl. 2018:313 (2018), 1-12. · Zbl 1498.26031
[35] B. Malešević, B. Banjac, I. Jovović: A proof of two conjectures of Chao-Ping Chen for inverse trigonometric functions, J. Math. Inequal. 11:1 (2017), 151-162. · Zbl 1357.26024
[36] B. Malešević, T. Lutovac, B. Banjac: A proof of an open problem of Yusuke Nishizawa for a power-exponential function, J. Math. Inequal. 12:2 (2018), 473-485. · Zbl 1395.26001
[37] T. Lutovac, B. Malešević, C. Mortici: The natural algorithmic approach of mixed trigonometric-polynomial problems, J. Inequal. Appl. 2017:116 (2017), 1-16. · Zbl 1373.42003
[38] B. Malešević, T. Lutovac, M. Rašajski, C. Mortici: Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities, Adv. Difference Equ. 2018:90 (2018), 1-15. · Zbl 1445.26015
[39] C.-P. Chen, B. Malešević: Sharp inequalities related to the Adamović-Mitrinović, Cusa, Wilker and Huygens results, Filomat 37:19 (2023), 6319-6334.
[40] Y. J. Bagul, B. Banjac, C. Chesneau, M. Kostić, B. Malešević: New Refine-ments of Cusa-Huygens Inequality, Results Math. 76:107 (2021), 1-16. · Zbl 1469.26018
[41] L. Zhu, B. Malešević: New inequalities of Huygens-type involving tangent and sine functions, Hacet. J. Math. Stat. 52:1 (2023), 36-61. · Zbl 1524.26029
[42] Y. J. Bagul, C. Chesneau, M. Kostić: On the Cusa-Huygens inequality, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM. 115:29 (2021), 1-12. · Zbl 1466.26014
[43] A. R. Chouikha: New sharp inequalities related to classical trigonometric inequali-ties, J. Inequal. Spec. Funct. 11:4 (2020), 27-35.
[44] A. R. Chouikha: Sharp inequalities related to Wilker results, Open Journal of Math-ematical Sciences 7:1 (2023), 19-34.
[45] A. R. Chouikha: On natural approaches related to classical trigonometric inequali-ties, Open Journal of Mathematical Sciences 7:1 (2023), 299-320.
[46] A. R. Chouikha, C. Chesneau: Contributions to trigonometric 1-parameter inequal-ities, HAL (Preprint) (2024), 1-21, hal-04500965.
[47] A. R. Chouikha: On the 1-parameter trigonometric and hyperbolic inequalities chains, HAL (Preprint) (2024), 1-13, hal-04435124.
[48] A. R. Chouikha: Other approaches related to Huygens trigonometric inequalities, HAL (Preprint) (2022), 1-15, hal-03769843.
[49] A. R. Chouikha, C. Chesneau, Y. J. Bagul: Some refinements of well-known inequalities involving trigonometric functions, J. Ramanujan Math. Soc. 36:3 (2021), 193-202. · Zbl 1497.26015
[50] Y. Hu, C. Mortici: A Lower Bound on the Sinc Function and Its Application, The Scientific World Journal 2014 (2014), 1-4.
[51] L. Debnath, C. Mortici, L. Zhu: Refinements of Jordan-Stečkin and Becker-Stark Inequalities, Results Math. 67 (2015), 207-215. · Zbl 1308.26029
[52] R. Shinde, C. Chesneau, N. Darkunde, S. Ghodechor, A. Lagad: Revisit of an Improved Wilker Type Inequality, Pan-American Journal of Mathematics 2 (2023), 1-17.
[53] Y. J. Bagul, C. Chesneau: Refined forms of Oppenheim and Cusa-Huygens type inequalities, Acta Comment. Univ. Tartu. Math. 24:2 (2020), 183-194. · Zbl 1462.26013
[54] Y. J. Bagul, C. Chesneau, M. Kostić: The Cusa-Huygens inequality revisited, Novi Sad J. Math. 50:2 (2020), 149-159. · Zbl 1465.26016
[55] Y. J. Bagul, C. Chesneau: Generalized bounds for sine and cosine functions, Asian-Eur. J. Math. 15:1 (2022), 1-16.
[56] R. M. Dhaigude, C. Chesneau, Y. J. Bagul: About Trigonometric-polynomial Bounds of Sinc Function, Math. Sci. Appl. E-Notes. 8:1 (2020), 100-104.
[57] Y. J. Bagul, R. M. Dhaigude, M. Kostić, C. Chesneau: Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions, Axioms 10:4, 308 (2021), 1-10.
[58] B. Zhang, C.-P. Chen: Sharp Wilker and Huygens type inequalities for trigonometric and inverse trigonometric functions, J. Math. Inequal. 14:3 (2020), 673-684. · Zbl 1454.26019
[59] C.-P. Chen, R. B. Paris: On the Wilker and Huygens-type inequalities, J. Math. Inequal. 14:3 (2020), 685-705. · Zbl 1462.26014
[60] B. Zhang, C.-P. Chen: Sharpness and generalization of Jordan, Becker-Stark and Papenfuss inequalities with an application, J. Math. Inequal. 13:4 (2019), 1209-1234. · Zbl 1435.26011
[61] C.-P. Chen, N. Elezović: Sharp Redheffer-type and Becker-Stark-type inequalities with an application, Math. Inequal. Appl. 21:4 (2018), 1059-1078. · Zbl 1403.26012
[62] Q.-X. Qiao, C.-P. Chen: Approximations to inverse tangent function, J. Inequal. Appl. 2018:141 (2018), 1-14. · Zbl 1498.26028
[63] C.-P. Chen, F. Qi: Inequalities of some trigonometric functions, Publikacije Elek-trotehničkog fakulteta. Serija Matematika 15 (2004), 72-79. · Zbl 1274.26030
[64] B.-N. Guo, Q.-M. Luo, F. Qi: Sharpening and generalizations of Shafer-Fink’s double inequality for the arc sine function, Filomat 27:2 (2013), 261-265. · Zbl 1324.33001
[65] W.-D. Jiang, Q.-M. Luo, F. Qi: Refinements and Sharpening of some Huygens and Wilker Type Inequalities, Turkish Journal of Analysis and Number Theory 2:4 (2014), 134-139.
[66] W.-D. Jiang: New sharp inequalities of Mitrinović-Adamović type, Appl. Anal. Dis-crete Math. 17:1 (2023), 76-91. · Zbl 1524.26068
[67] G. Bercu: The natural approach of trigonometric inequalities -Padé approximant, J. Math. Inequal. 11:1 (2017), 181-191. · Zbl 1357.41011
[68] G. Bercu: Refinements of Wilker-Huygens-Type Inequalities via Trigonometric Se-ries, Symmetry 13:8 (2021), 1-13.
[69] C.-P. Chen, C. Mortici: The relationship between Huygens’ and Wilker’s inequali-ties and further remarks, Appl. Anal. Discrete Math. 17:1 (2023), 92-100. · Zbl 1524.26026
[70] L. Zhu, Z. Sun: Refinements of Huygens-and Wilker-type inequalities, AIMS Math-ematics 5:4 (2020), 2967-2978. · Zbl 1484.26110
[71] L. Zhu: New inequalities of Wilker’s type for circular functions, AIMS Mathematics 5:5 (2020), 4874-4888. · Zbl 1484.33003
[72] L. Zhu: New Inequalities of Cusa-Huygens Type, Mathematics 9:17 (2021), 1-13.
[73] Y. J. Bagul, S. B. Thool, C. Chesneau, R. M. Dhaigude: Refinements of some classical inequalities involving sinc and hyperbolic sinc functions, Ann. Math. Sil. 37:1 (2023), 1-15. · Zbl 07665189
[74] N. Kasuga, M. Nakasuji, Y. Nishizawa, T. Sekine: Sharped Jordan’s type inequal-ities with exponential approximations, J. Math. Inequal. 17:4 (2023), 1539-1550. · Zbl 07811272
[75] D.Q. Huy, P.T. Hieu D.T.T. Van: New sharp bounds for sinc and hyperbolic sinc functions via cos and cosh functions, Afr. Mat. 35:38 (2024), 1-13. · Zbl 07853047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.