×

On rank 3 quadratic equations of projective varieties. (English) Zbl 07876013

Summary: Let \(X \subset \mathbb{P}^r\) be a linearly normal variety defined by a very ample line bundle \(L\) on a projective variety \(X\). Recently it is shown by Kangjin Han, Wanseok Lee, Hyunsuk Moon, and Euisung Park [Compos. Math. 157 (2021), pp. 2001-2025] that there are many cases where \((X,L)\) satisfies property QR(3) in the sense that the homogeneous ideal \(I(X,L)\) of \(X\) is generated by quadratic polynomials of rank 3. The locus \(\Phi_3 (X,L)\) of rank 3 quadratic equations of \(X\) in \(\mathbb{P}\left ( I(X,L)_2 \right )\) is a projective algebraic set, and property QR(3) of \((X,L)\) is equivalent to that \(\Phi_3 (X)\) is nondegenerate in \(\mathbb{P}\left ( I(X)_2 \right )\). In this paper we study geometric structures of \(\Phi_3 (X,L)\) such as its minimal irreducible decomposition. Let \[\Sigma (X,L) \!=\! \{ (A,B) \mid A,B \!\in \! \text{Pic}(X),~L \!=\! A^2 \otimes B,~h^0 (X,A) \!\geq \! 2,~h^0 (X,B) \!\geq \! 1 \}.\] We first construct a projective subvariety \(W(A,B) \subset \Phi_3 (X,L)\) for each \((A,B)\) in \(\Sigma (X,L)\). Then we prove that the equality \[\Phi_3 (X,L) ~=~ \bigcup_{(A,B) \in \Sigma (X,L)} W(A,B)\] holds when \(X\) is locally factorial. Thus this is an irreducible decomposition of \(\Phi_3 (X,L)\) when \(\text{Pic} (X)\) is finitely generated and hence \(\Sigma (X,L)\) is a finite set. Also we find a condition that the above irreducible decomposition is minimal. For example, it is a minimal irreducible decomposition of \(\Phi_3 (X,L)\) if \(\text{Pic}(X)\) is generated by a very ample line bundle.

MSC:

14E25 Embeddings in algebraic geometry
13C05 Structure, classification theorems for modules and ideals in commutative rings
14M15 Grassmannians, Schubert varieties, flag manifolds
14A10 Varieties and morphisms

References:

[1] Arbarello, Enrico, Canonical curves and quadrics of rank \(4\), Compositio Math., 145-179, 1981 · Zbl 0494.14011
[2] Arzhantsev, I. V., On the factoriality of Cox rings, Math. Notes. Mat. Zametki, 643-651, 2009 · Zbl 1192.14008 · doi:10.1134/S0001434609050022
[3] Berchtold, Florian, Homogeneous coordinates for algebraic varieties, J. Algebra, 636-670, 2003 · Zbl 1073.14001 · doi:10.1016/S0021-8693(03)00285-0
[4] Bernardi, Alessandra, Ideals of varieties parameterized by certain symmetric tensors, J. Pure Appl. Algebra, 1542-1559, 2008 · Zbl 1131.14055 · doi:10.1016/j.jpaa.2007.10.022
[5] Eisenbud, David, The geometry of syzygies, Graduate Texts in Mathematics, xvi+243 pp., 2005, Springer-Verlag, New York · Zbl 1066.14001
[6] Eisenbud, David, Determinantal equations for curves of high degree, Amer. J. Math., 513-539, 1988 · Zbl 0681.14027 · doi:10.2307/2374621
[7] Ein, Lawrence, Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension, Invent. Math., 51-67, 1993 · Zbl 0814.14040 · doi:10.1007/BF01231279
[8] Elizondo, E. Javier, The total coordinate ring of a normal projective variety, J. Algebra, 625-637, 2004 · Zbl 1074.14006 · doi:10.1016/j.jalgebra.2003.07.007
[9] Gallego, F. J., Projective normality and syzygies of algebraic surfaces, J. Reine Angew. Math., 145-180, 1999 · Zbl 0951.14012 · doi:10.1515/crll.1999.506.145
[10] Green, Mark L., Koszul cohomology and the geometry of projective varieties, J. Differential Geom., 125-171, 1984
[11] Green, Mark L., Koszul cohomology and the geometry of projective varieties. II, J. Differential Geom., 279-289, 1984 · Zbl 0559.14009
[12] Green, M. L., Quadrics of rank four in the ideal of a canonical curve, Invent. Math., 85-104, 1984 · Zbl 0542.14018 · doi:10.1007/BF01403092
[13] Green, M., Some results on the syzygies of finite sets and algebraic curves, Compositio Math., 301-314, 1988 · Zbl 0671.14010
[14] H\`a, Huy T\`ai, Box-shaped matrices and the defining ideal of certain blowup surfaces, J. Pure Appl. Algebra, 203-224, 2002 · Zbl 1044.13004 · doi:10.1016/S0022-4049(01)00032-9
[15] Han, Kangjin, Rank 3 quadratic generators of Veronese embeddings, Compos. Math., 2001-2025, 2021 · Zbl 1476.13019 · doi:10.1112/S0010437X2100748X
[16] Harris, Joe, Algebraic geometry, Graduate Texts in Mathematics, xx+328 pp., 1992, Springer-Verlag, New York · Zbl 0779.14001 · doi:10.1007/978-1-4757-2189-8
[17] Hartshorne, Robin, Algebraic geometry, Graduate Texts in Mathematics, No. 52, xvi+496 pp., 1977, Springer-Verlag, New York-Heidelberg · Zbl 0367.14001
[18] Inamdar, S. P., On syzygies of projective varieties, Pacific J. Math., 71-76, 1997 · Zbl 0898.14015 · doi:10.2140/pjm.1997.177.71
[19] Hyunsuk Moon and Euisung Park, On the Rank Index of Some Quadratic Varieties, Mediterr. J. Math. 20 (2023), DOI 10.1007/s00009-023-02460-9 · Zbl 1522.14075
[20] Mukai, Shigeru, An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, xx+503 pp., 2003, Cambridge University Press, Cambridge · Zbl 1033.14008
[21] Park, Euisung, On surfaces of minimal degree in \(\mathbb{P}^5\), J. Symbolic Comput., 116-123, 2022 · Zbl 1470.14111 · doi:10.1016/j.jsc.2021.08.001
[22] Park, Euisung, On the rank of quadratic equations for curves of high degree, Mediterr. J. Math., Paper No. 244, 9 pp., 2022 · Zbl 1498.14015 · doi:10.1007/s00009-022-02170-8
[23] Euisung Park and Saerom Shim, On rank 3 quadratic equations of rational normal curves, in preparation.
[24] Petri, K., \"{U}ber die invariante Darstellung algebraischer Funktionen einer Ver\"{a}nderlichen, Math. Ann., 242-289, 1923 · JFM 49.0264.02 · doi:10.1007/BF01579181
[25] Pucci, Mario, The Veronese variety and catalecticant matrices, J. Algebra, 72-95, 1998 · Zbl 0936.14034 · doi:10.1006/jabr.1997.7190
[26] Saint-Donat, Bernard, Sur les \'{e}quations d\'{e}finissant une courbe alg\'{e}brique, C. R. Acad. Sci. Paris S\'{e}r. A-B, A324-A327, 1972
[27] Saint-Donat, B., On Petri’s analysis of the linear system of quadrics through a canonical curve, Math. Ann., 157-175, 1973 · Zbl 0315.14010 · doi:10.1007/BF01430982
[28] Sidman, Jessica, Linear determinantal equations for all projective schemes, Algebra Number Theory, 1041-1061, 2011 · Zbl 1250.14002 · doi:10.2140/ant.2011.5.1041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.