×

On explicit abstract neutral differential equations with state-dependent delay. (English) Zbl 07873827

Initial value problems for partial differential equations with dependence on the past time derivative are considered; they take the abstract form \[ \begin{aligned} \dot u (t) & = Au(t) + F[t, \dot u(\sigma(t, u(t)))], \; t \in [0, a], \\ u_0 & = \varphi \in C^0([-p, 0]; X), \end{aligned}\] with a Banach space \(X\), and the operator \(A \) is the generator of an analytic semigroup. The consistently bumpy language (singular/plural, past/present etc.), especially in the introduction, did apparently not bother any of the referees whose work is acknowledged.
Three types of solutions are distinguished:
1)
Mild solutions (which solve an associated integral equation),
2)
‘strict solutions’ (which are, roughly speaking, \(C^1 \) w.r. to time on \([0, b]\) for some \( b >0\) (but not necessarily on the past interval \([-p, 0]\), and
3)
\(C^{1 + \alpha}\) solutions (which satisfy \(u(\cdot) \in C^{1+\alpha}(I, X)\) for some interval \(I\) around zero).
An important technique is the use of \(L^q\)-Lipschitz functions, roughly meaning that a time-dependent Lipschitz constant (w.r. to the time argument) is of class \(L^q\) w.r. to time. Existence and uniqueness of mild solutions is proved first, using a contraction argument. This is shown under the alternative assumptions \(T(\cdot) \varphi(0) \in C^0( [0, a], X) \) or \(T(\cdot) \varphi(0) \in C^0( [0, a], X_{\gamma}) \), where \(T(\cdot) \) is the semigroup generated by \(A\) and \(X_{\gamma}\) denotes fractional power spaces.
Additional restrictions on the nonlinearity \(F\) and the delay functional \( \sigma\), together with the condition \(\varphi(0) \in D(A)\), allow to conclude that the mild solutions are also strict. Here the proof is based on earlier Work of Hernandez, Fernandes and Wu.
Under lower smoothness assumptions, but with compactness conditions on the semigroup, a Peano type existence theorem is provided.
Finally, \(C^{1 + \alpha}\) solutions are constructed in Theorem 3.2, using a compatibility condition on the nitial state \( \varphi\). Under a boundedness assumption on the delay functional \( \sigma\), they exist on all of \( [-p, a]\). Several alternative conditions, for example of the type \( \sigma(t,x) < t\) for all \(t>0\), allow to extend these solutions to maximal solutions on \([-p, \infty)\).
Examples with the Dirichlet-Laplace operator and with a logistic-type \(F\), but also more general nonlinearities, conclude the paper.

MSC:

34K43 Functional-differential equations with state-dependent arguments
34K30 Functional-differential equations in abstract spaces
34K40 Neutral functional-differential equations
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] Angelov, VG; Bainov, D., Absolutely continuous global solutions of the initial value problem for neutral functional-differential equations of mixed type, Rend. Circ. Mat. Palermo, 2, 30, 3435-3452, 1981
[2] Angelov, VG; Bainov, DD, Existence and uniqueness of the global solution of the initial value problem for neutral type differential-functional equations in Banach space, Nonlinear Anal., 4, 1, 93-107, 1980 · Zbl 0428.34043 · doi:10.1016/0362-546X(80)90040-1
[3] Angelov, VG, Bounded solutions of functional-differential equations of the superneutral type, Funkcial. Ekvac., 24, 1, 11-22, 1981 · Zbl 0485.34040
[4] Driver, RD; LaSalle, J.; Lefschtz, S., A functional-differential system of neutral type arising in a two-body problem of classical electrodynamics, International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, 474-484, 1963, New York: Academic Press, New York · Zbl 0134.22601 · doi:10.1016/B978-0-12-395651-4.50051-9
[5] Driver, RD, A neutral system with state-dependent delay, J. Differ. Equ., 54, 73-86, 1984 · Zbl 1428.34119 · doi:10.1016/0022-0396(84)90143-8
[6] Driver, R.D: Delay-differential equations and an application to a two-body problem of classical electrodynamics. Thesis (Ph.D.)-University of Minnesota, p. 63 (1960)
[7] Enright, WH; Hayashi, H., Convergence analysis of the solution of retarded and neutral delay differential equations by continuous numerical methods, SIAM J. Numer. Anal., 35, 2, 572-585, 1998 · Zbl 0914.65084 · doi:10.1137/S0036142996302049
[8] Grimm, LJ, Existence and continuous dependence for a class of nonlinear neutral-differential equations, Proc. Amer. Math. Soc., 29, 467-473, 1971 · Zbl 0222.34061
[9] Gopalsamy, K.; Zhang, BG, On a neutral delay logistic equation, Dynam. Stab. Syst., 2, 3-4, 183-195, 1987 · Zbl 0665.34066
[10] Guglielmi, Nicola; Fusco, Giorgio, A regularization for discontinuous differential equations with application to state-dependent delay differential equations of neutral type, J. Differ. Equ., 250, 7, 3230-3279, 2011 · Zbl 1218.34012
[11] Hartung, F.; Krisztin, T.; Walther, H-O; Wu, J., Functional differential equations with state-dependent delays: theory and applications, Handbook of differential equations: ordinary differential equations, 435-545, 2006, Amsterdam: Elsevier, Amsterdam · Zbl 1107.34002 · doi:10.1016/S1874-5725(06)80009-X
[12] Hernandez, Eduardo, On explicit abstract neutral differential equations with state-dependent delay, Proc. Amer. Math. Soc., 151, 1119-1133, 2023 · Zbl 1512.34154 · doi:10.1090/proc/16181
[13] Hernandez, E.; Wu, J., Explicit abstract neutral differential equations with state-dependent delay: existence, uniqueness and local well-posedness, J. Differ. Equ., 365, 750-811, 2023 · Zbl 1525.34115 · doi:10.1016/j.jde.2023.05.011
[14] Hernandez, E., On explicit abstract neutral differential equations with state-dependent delay II, Proc. Amer. Math. Soc., 151, 1119-1133, 2023 · Zbl 1512.34154 · doi:10.1090/proc/16181
[15] Hernandez, E.; Fernandes, D.; Wu, J., Existence and uniqueness of solutions well-posedness and global attractor for abstract differential equations with state-dependent delay, J. Differ. Equ., 302, 25, 753-806, 2021 · Zbl 1484.34168 · doi:10.1016/j.jde.2021.09.014
[16] Hernandez, E.; Chadha, A.; Wu, J., Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay, J. Differ. Equ., 269, 10, 8701-8735, 2020 · Zbl 07216765 · doi:10.1016/j.jde.2020.06.030
[17] Hernandez, E.; Pierri, M.; Wu, J., \( {C}^{ {1}+\alpha }\)-strict solutions and wellposedness of abstract differential equations with state dependent delay, J. Differ. Equ., 261, 12, 6856-6882, 2016 · Zbl 1353.34093 · doi:10.1016/j.jde.2016.09.008
[18] Hernandez, E.; Wu, J., Existence and uniqueness of \(\textbf{C}^{\textbf{1} +\alpha }-\)-strict solutions for integro-differential equations with state-dependent delay, Differ. Integr. Equ., 32, 5-6, 291-322, 2019 · Zbl 1424.34267
[19] Hernandez, E.; Fernandes, D.; Wu, J., Well-posedness of abstract integro-differential equations with state-dependent delay, Proc. Amer. Math. Soc., 148, 1595-1609, 2020 · Zbl 1460.34092 · doi:10.1090/proc/14820
[20] Hernandez, E.; Wu, J.; Fernandes, D., Existence and uniqueness of solutions for abstract neutral differential equations with state dependent delay, Appl. Math. Optim., 81, 89-111, 2020 · Zbl 1448.34140 · doi:10.1007/s00245-018-9477-x
[21] Hernandez, E.; Pierri, M., On abstract neutral differential equations with state-dependent delay, J. Fixed Point Theory Appl., 20, 20, 3-97, 2018 · Zbl 1411.34106
[22] Hernandez, E.; Lisboa, L.; Fernandes, D., Abstract differential equations and \(L^{q,\alpha } \)-Hölder functions, Mediterr. J. Math., 21, 2, 1-24, 2024 · Zbl 1536.34057 · doi:10.1007/s00009-024-02596-2
[23] Jackiewicz, Zdzislaw, Existence and uniqueness of solutions of neutral delay-differential equations with state dependent delays, Funkcial. Ekvac., 30, 1, 9-17, 1987 · Zbl 0631.34006
[24] Kosovalic, N.; Chen, Y.; Wu, J., Algebraic-delay differential systems: \(C^0\)-extendable submanifolds and linearization, Trans. Amer. Math. Soc., 369, 5, 3387-3419, 2017 · Zbl 1362.34098 · doi:10.1090/tran/6760
[25] Kosovalic, N.; Magpantay, FMG; Chen, Y.; Wu, J., Abstract algebraic-delay differential systems and age structured population dynamics, J. Differ. Equ., 255, 3, 593-609, 2013 · Zbl 1291.34124 · doi:10.1016/j.jde.2013.04.025
[26] Krisztin, T.; Rezounenko, A., Parabolic partial differential equations with discrete state-dependent delay: classical solutions and solution manifold, J. Differ. Equ., 260, 5, 4454-4472, 2016 · Zbl 1334.35374 · doi:10.1016/j.jde.2015.11.018
[27] Kuang, Yang, Qualitative analysis of one or two-species neutral delay population models, SIAM J. Math. Anal., 23, 1, 181-200, 1992 · Zbl 0752.92021 · doi:10.1137/0523009
[28] Kuang, Y., Delay differential equations with applications in population dynamics, Mathematics in Science and Engineering, 1993, Boston: Academic Press, Inc., Boston · Zbl 0777.34002
[29] Kuang, Yang, Global stability in one or two species neutral delay population models, Canad. Appl. Math. Quart., 1, 1, 23-45, 1993 · Zbl 0805.92021
[30] Li, Yongkun, On a periodic neutral delay Lotka-Volterra system, Nonlinear Anal. Theory Methods Appl., 39, 6767-6778, 2000 · Zbl 0943.34058 · doi:10.1016/S0362-546X(98)00235-1
[31] Li, Yongkun, Positive periodic solutions of periodic neutral Lotka-Volterra system with state dependent delays, J. Math. Anal. Appl., 330, 2, 1347-1362, 2007 · Zbl 1118.34059 · doi:10.1016/j.jmaa.2006.08.063
[32] Li, Q.; Cao, J.; Wan, S., Positive periodic solution for a neutral delay model in population, J. Biomath., 13, 4, 435-438, 1998 · Zbl 1054.92506
[33] Lunardi, A., Analytic semigroups and optimal regularity in parabolic problems PNLDE, 1995, Basel: Birkhäauser Verlag, Basel · Zbl 0816.35001 · doi:10.1007/978-3-0348-0557-5
[34] Lv, Yunfei; Pei, Yongzhen; Yuan, Rong, Principle of linearized stability and instability for parabolic partial differential equations with state-dependent delay, J. Differ. Equ., 267, 3, 1671-1704, 2019 · Zbl 1415.35033 · doi:10.1016/j.jde.2019.02.014
[35] Pazy, A., Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 1983, New York: Springer, New York · Zbl 0516.47023
[36] Sinestrari, E., On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl., 107, 1, 16-66, 1985 · Zbl 0589.47042 · doi:10.1016/0022-247X(85)90353-1
[37] Walther, Hans-Otto, A finite atlas for solution manifolds of differential systems with discrete state-dependent delays, Differ. Integr. Equ., 35, 5-6, 241-276, 2022 · Zbl 1513.34243
[38] Walther, HO, Dense short solution segments from monotonic delayed arguments, J. Dynam. Differ. Equ., 2021 · Zbl 1507.34076 · doi:10.1007/s10884-021-10008-2
[39] Walther, Hans-Otto, Solution manifolds which are almost graphs, J. Differ. Equ., 293, 226-248, 2021 · Zbl 1503.34112 · doi:10.1016/j.jde.2021.05.024
[40] Zhu, J.; Fu, X., Periodicity of solutions for non-autonomous neutral functional differential equations with state-dependent delay, J. Dynam. Differ. Equ., 35, 1389-1408, 2023 · Zbl 1526.34044 · doi:10.1007/s10884-021-10098-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.