×

Upper bounds for the critical values of homology classes of loops. (English) Zbl 07873600

Let \(M\) be a compact differentiable manifold endowed with either a Riemannian or non-reversible Finsler metric. Let \(X\) denote either the free loop space \(\Lambda M\), the pathspace \(\Omega_{pq}M\), or the based loop space \(\Omega_pM\). Define the square root energy functional \[F : X \rightarrow \mathbb{R}\] by \[ F(\gamma) = \sqrt{ \int_0^1 ||\gamma^\prime(t)||^2\thinspace dt} \] where \(||\gamma^\prime(t)||\) is the norm of the velocity vector of \(\gamma \in X\) at \(t\). For \(a \in \mathbb{R}\), set \[ X^{\leq a} = \{ \gamma \in X: F(\gamma) \leq a\}. \] Given a nontrivial homology class \(h \in H_j(X,X^{\leq b})\), the critical value \(cr_X(h)\) is defined to be the infimum of the \(a\) such that \(h\) lies in the image of \(H_j(X^{\leq a}, X^{\leq b})\) in \(H_j(X, X^{\leq b})\).
In this paper the author obtains an upper bound for \(cr_X(h)\). When there is a positive lower bound on the sectional curvature or on the Ricci curvature of \(M\), the upper bound on \(cr_X(h)\) is expressed in terms of the lower bounds on the sectional or Ricci curvature of \(M\). This leads to an upper bound on the length of the shortest periodic geodesic in \(M\) in terms of a positive lower bound on the Ricci curvature. This result improves previous bounds on the length of the shortest periodic geodesic.

MSC:

53C22 Geodesics in global differential geometry
58E10 Variational problems in applications to the theory of geodesics (problems in one independent variable)
53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)

References:

[1] Abraham, R.: Bumpy metrics. in: Global Analysis. Proc. Symp. Pure Math Vol. XIV Amer. Math. Soc. Providence R.I., pp. 1-3 (1970) · Zbl 0215.23301
[2] Anosov, D.V.: On generic properties of closed geodesics. Izv. Akad.Nauk. SSSR 46(1982)= Math. USSR Izv. 21, 1-29 (1983) · Zbl 0554.58043
[3] Ballmann, W.; Thorbergsson, G.; Ziller, W., Existence of closed geodesics on positively curved manifolds, J. Differ. Geom., 18, 221-252, 1983 · Zbl 0514.53044 · doi:10.4310/jdg/1214437662
[4] Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Prog. Math. 152. Birkhäuser Boston, Inc., Boston (1999) · Zbl 0953.53002
[5] Hingston, N.; Rademacher, HB, Resonance for loop homology of spheres, J. Differ. Geom., 93, 133-174, 2013 · Zbl 1285.53031 · doi:10.4310/jdg/1357141508
[6] Klingenberg, W., Riemannian Geometry. De Gruyter Studies in Mathematics, 1995, Berlin: de Gruyter, Berlin · Zbl 0911.53022 · doi:10.1515/9783110905120
[7] Milnor, J., Morse Theory. Annals of Mathematics Studies, 1969, Princeton: Princeton University Press, Princeton · Zbl 0172.27301
[8] Nabutovsky, A.; Rotman, R., Length of geodesics and quantitative Morse theory on loop spaces, Geom. Funct. Anal., 23, 367-414, 2013 · Zbl 1273.53035 · doi:10.1007/s00039-012-0207-2
[9] Rademacher, HB, A sphere theorem for non-reversible Finsler metrics, Math. Ann., 328, 373-387, 2004 · Zbl 1050.53063 · doi:10.1007/s00208-003-0485-y
[10] Rademacher, HB, Critical values of homology classes of loops and positive curvature, J. Differ. Geom., 119, 141-158, 2021 · Zbl 1493.53057 · doi:10.4310/jdg/1631124316
[11] Rademacher, HB; Taimanov, IA, The second closed geodesic, the fundamental group, and generic Finsler metrics, Math. Z., 302, 629-640, 2023 · Zbl 1504.53056 · doi:10.1007/s00209-022-03062-z
[12] Rotman, R.: Positive Ricci curvature and the length of a shortest periodic geodesic. arXiv:2203.09492 (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.