×

3D auxetic linkage based on Kirigami. (English) Zbl 07873079

Summary: The structural design of 3D auxetic linkages is a burgeoning field in digital manufacturing. This article presents a novel algorithm for designing 3D auxetic linkage structures based on Kirigami principles to address existing limitations. The 3D input model is initially mapped to a 2D space using conformal mapping based on the BFF method. This is followed by 2D re-meshing using an equilateral triangle mesh. Subsequently, a 3D topological mesh of the auxetic linkage is calculated through inverse mapping based on directed area. We then introduce new basic rotating and non-rotating units, employing them as the initial structure of the 3D auxetic linkage in accordance with Kirigami techniques. Lastly, a deformation energy function is defined to optimize the shape of the rotating units. The vertex coordinates of the non-rotating units are updated according to the optimized positions of the rotating units, thereby generating an optimal 3D auxetic linkage structure. Experimental results validate the effectiveness and accuracy of our algorithm. Quantitative analyses of structural porosity and optimization accuracy, as well as comparisons with related works, indicate that our algorithm yields structures with smaller shape errors.

MSC:

65Dxx Numerical approximation and computational geometry (primarily algorithms)
Full Text: DOI

References:

[1] Alderete, N. A.; Pathak, N.; Espinosa, H. D., Machine learning assisted design of shape-programmable 3d Kirigami metamaterials, npj Comput. Mater., 8, 191, 2022
[2] Bouaziz, S.; Deuss, M.; Schwartzburg, Y.; Weise, T.; Pauly, M., Shape-up: shaping discrete geometry with projections, (Computer Graphics Forum, 2012, Wiley Online Library), 1657-1667
[3] Cho, Y.; Shin, J. H.; Costa, A.; Kim, T. A.; Kunin, V.; Li, J.; Lee, S. Y.; Yang, S.; Han, H. N.; Choi, I. S., Engineering the shape and structure of materials by fractal cut, Proc. Natl. Acad. Sci., 111, 17390-17395, 2014
[4] Choi, G. P.; Dudte, L. H.; Mahadevan, L., Programming shape using Kirigami tessellations, Nat. Mater., 18, 999-1004, 2019
[5] Deuss, M.; Deleuran, A. H.; Bouaziz, S.; Deng, B.; Piker, D.; Pauly, M., Shapeop—a robust and extensible geometric modelling paradigm, (Modelling Behaviour: Design Modelling Symposium 2015, 2015, Springer), 505-515
[6] Dudek, K. K.; Gatt, R.; Mizzi, L.; Dudek, M. R.; Attard, D.; Grima, J. N., Global rotation of mechanical metamaterials induced by their internal deformation, AIP Adv., 7, 2017
[7] Friedrich, J.; Pfeiffer, S.; Gengnagel, C., Locally varied auxetic structures for doubly-curved shapes, (Humanizing Digital Reality: Design Modelling Symposium Paris 2017, 2018, Springer), 323-336
[8] Gatt, R.; Mizzi, L.; Azzopardi, J. I.; Azzopardi, K. M.; Attard, D.; Casha, A.; Briffa, J.; Grima, J. N., Hierarchical auxetic mechanical metamaterials, Sci. Rep., 5, 8395, 2015
[9] Grima, J. N.; Chetcuti, E.; Manicaro, E.; Attard, D.; Camilleri, M.; Gatt, R.; Evans, K. E., On the auxetic properties of generic rotating rigid triangles, Proc. R. Soc. A, Math. Phys. Eng. Sci., 468, 810-830, 2012 · Zbl 1364.74010
[10] Grima, J. N.; Jackson, R.; Alderson, A.; Evans, K. E., Do zeolites have negative Poisson’s ratios?, Adv. Mater., 12, 1912-1918, 2000
[11] Guseinov, R.; Miguel, E.; Bickel, B., Curveups: shaping objects from flat plates with tension-actuated curvature, ACM Trans. Graph., 36, Article 64 pp., 2017
[12] Hong, Y.; Chi, Y.; Wu, S.; Li, Y.; Zhu, Y.; Yin, J., Boundary curvature guided programmable shape-morphing Kirigami sheets, Nat. Commun., 13, 530, 2022
[13] Hou, Y.; Neville, R.; Scarpa, F.; Remillat, C.; Gu, B.; Ruzzene, M., Graded conventional-auxetic Kirigami sandwich structures: flatwise compression and edgewise loading, Composites, Part B, Eng., 59, 33-42, 2014
[14] Jiang, C.; Mundilova, K.; Rist, F.; Wallner, J.; Pottmann, H., Curve-pleated structures, ACM Trans. Graph. (TOG), 38, 1-13, 2019
[15] Jin, L.; Forte, A. E.; Deng, B.; Rafsanjani, A.; Bertoldi, K., Kirigami-inspired inflatables with programmable shapes, Adv. Mater., 32, Article 2001863 pp., 2020
[16] Kilian, M.; Monszpart, A.; Mitra, N. J., String actuated curved folded surfaces, ACM Trans. Graph. (TOG), 36, 1-13, 2017
[17] Konaković, M.; Crane, K.; Deng, B.; Bouaziz, S.; Piker, D.; Pauly, M., Beyond developable: computational design and fabrication with auxetic materials, ACM Trans. Graph. (TOG), 35, 1-11, 2016
[18] Konaković-Luković, M.; Panetta, J.; Crane, K.; Pauly, M., Rapid deployment of curved surfaces via programmable auxetics, ACM Trans. Graph. (TOG), 37, 1-13, 2018
[19] Lee, Y. J.; Kanchwala, S. K.; Cho, H.; Jolly, J. C.; Jablonka, E.; Tanis, M.; Kamien, R. D.; Yang, S., Natural shaping of acellular dermal matrices for implant-based breast reconstruction via expansile Kirigami, Adv. Mater., 35, Article 2208088 pp., 2023
[20] Li, S.; Liu, N.; Becton, M.; Winter, N.; Pidaparti, R. M.; Wang, X., Mechanics of 2d materials-based cellular Kirigami structures: a computational study, JOM, 72, 4706-4717, 2020
[21] Li, X.; Zhu, P.; Zhang, S.; Wang, X.; Luo, X.; Leng, Z.; Zhou, H.; Pan, Z.; Mao, Y., A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable Kirigami-structured liquid metal paper for multifunctional e-skin, ACS Nano, 16, 5909-5919, 2022
[22] Malomo, L.; Pérez, J.; Iarussi, E.; Pietroni, N.; Miguel, E.; Cignoni, P.; Bickel, B., Flexmaps: computational design of flat flexible shells for shaping 3d objects, ACM Trans. Graph. (TOG), 37, 1-14, 2018
[23] Neville, R. M.; Scarpa, F.; Pirrera, A., Shape morphing Kirigami mechanical metamaterials, Sci. Rep., 6, Article 31067 pp., 2016
[24] Niven, I., Maxima and Minima Without Calculus, vol. 6, 1981, Cambridge University Press · Zbl 0476.00001
[25] Rafsanjani, A.; Pasini, D., Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs, Extrem. Mech. Lett., 9, 291-296, 2016
[26] Rafsanjani, A.; Zhang, Y.; Liu, B.; Rubinstein, S. M.; Bertoldi, K., Kirigami skins make a simple soft actuator crawl, Sci. Robot., 3, Article eaar7555 pp., 2018
[27] Ruiz, C. R.; Le, S. N.; Yu, J.; Low, K. L., Multi-style paper pop-up designs from 3d models, (Computer Graphics Forum, 2014, Wiley Online Library), 487-496
[28] Sawhney, R.; Crane, K., Boundary first flattening, ACM Trans. Graph. (ToG), 37, 1-14, 2017
[29] Tachi, T., Origamizing polyhedral surfaces, IEEE Trans. Vis. Comput. Graph., 16, 298-311, 2009
[30] Tang, Y.; Yin, J., Design of cut unit geometry in hierarchical Kirigami-based auxetic metamaterials for high stretchability and compressibility, Extrem. Mech. Lett., 12, 77-85, 2017
[31] Wu, G.; Cho, Y.; Choi, I. S.; Ge, D.; Li, J.; Han, H. N.; Lubensky, T.; Yang, S., Directing the deformation paths of soft metamaterials with prescribed asymmetric units, Adv. Mater., 27, 2747-2752, 2015
[32] Zhao, J.; Zou, Q.; Li, L.; Zhou, B., Tool path planning based on conformal parameterization for meshes, Chin. J. Aeronaut., 28, 1555-1563, 2015
[33] Zhu, L.; Igarashi, T.; Mitani, J., Soft folding, (Computer Graphics Forum, 2013, Wiley Online Library), 167-176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.