×

On the triviality of Gorenstein \((\mathcal{L}, \mathcal{A})\)-modules. (English) Zbl 07872557

Let \(R\) be an associative ring with unit. The notion of a duality pair was introduced by J. Gillespie in [J. Pure Appl. Algebra 223, No. 8, 3425–3435 (2019; Zbl 1409.13034)] as a pair, \((_R{\mathcal L},{\mathcal A}_R)\), of classes of \(R\)-modules, left \(R\)-modules the first and right \(R\)-modules the second, satisfying that \(L\in {\mathcal L}\) if and only if \(L^+ =Hom_{\mathbb Z}(M,{\mathbb Q}/{\mathbb Z}) \in {\mathcal A}\) and that \(\mathcal A\) is closed under direct summands and finite direct sums. By using these pairs, a relative homological algebra by defining Gorenstein \((\mathcal L, \mathcal A)\)- projective, injective and flat was developed.
In this paper, for some particular duality pairs it is characterized when these new notions coincide with the classical notions of projective, injective and flat modules. This result is applied to obtain a characterization of strongly left CM-free, i.e. every Gorenstein projective left \(R\)-module is projective, to compare the global dimension of the ring with the relative global dimension respect to \((\mathcal L, \mathcal A)\), and to give a sufficient condition for the relative derived category with respect to Gorenstein \((\mathcal L, \mathcal A)\)-projective to be compactly generated

MSC:

18G25 Relative homological algebra, projective classes (category-theoretic aspects)
18G20 Homological dimension (category-theoretic aspects)
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)

Citations:

Zbl 1409.13034
Full Text: DOI

References:

[1] Bennis, D., Rings over which the class of Gorenstein flat modules is closed under extensions, Comm. Algebra, 37, 855-868, 2009 · Zbl 1205.16006 · doi:10.1080/00927870802271862
[2] Bravo, D.; Estrada, S.; Iacob, A., \(FP_n\)-injective, \(FP_n\)-flat covers and preenvelopes, and Gorenstein AC-flat covers, Algebra Colloq., 25, 319-334, 2018 · Zbl 1427.18007 · doi:10.1142/S1005386718000226
[3] Bravo, D., Gillespie, J., Hovey, M.: The stable module category of a general ring, preprint, arXiv:1405.5768, (2014)
[4] Bravo, D.; Pérez, MA, Finiteness conditions and cotorsion pairs, J. Pure. Appl. Algebra, 6, 1249-1267, 2017 · Zbl 1362.18019 · doi:10.1016/j.jpaa.2016.09.008
[5] Chen, XW, Homotopy equivalences induced by balanced pairs, J. Algebra, 324, 2718-2731, 2010 · Zbl 1239.18010 · doi:10.1016/j.jalgebra.2010.09.002
[6] Chen, XW, Algebras with radical square zero are either self-injective or CM-free, Proc. Amer. Math. Soc, 140, 93-98, 2012 · Zbl 1254.18014 · doi:10.1090/S0002-9939-2011-10921-3
[7] Ding, NQ; Li, YL; Mao, LX, Strongly Gorenstein flat modules, J. Aust. Math. Soc., 86, 323-338, 2009 · Zbl 1200.16010 · doi:10.1017/S1446788708000761
[8] I. Emmanouil, On the finiteness of Gorenstein homological dimensions, \(J.~Algebra 372 (2012) 376-396\) · Zbl 1286.13014
[9] E.E. Enochs, M. Cortés-Izurdiaga and B. Torrecillas, Gorenstein conditions over triangular matrix rings, \(J.~Pure~Appl.~Algebra\) 218(8) (2014) 1544-1554 · Zbl 1312.16023
[10] E.E. Enochs and O.M.G. Jenda, Gorenstein injective and projective modules, \(Math.~Z. 220 (1995) 611-633\) · Zbl 0845.16005
[11] E.E. Enochs, O.M.G. Jenda and B. Torrecillas, Gorenstein flat modules, \(Nanjing \[Daxue\] Xuebao \[Shuxue\] Bannian Kan 10 (1993) 1-9\) · Zbl 0794.16001
[12] S. Estrada, A. Iacob and M. A. Pérez, Model structures and relative Gorenstein flat modules and chain complexes, Categorical, homological and combinatorial methods in algebra, Contemp. Math., vol. 751, Amer. Math. Soc., Providence, RI, 2020, pp. 135-175, doi:10.1090/conm/751/15084 · Zbl 1437.18009
[13] Gao, N.; Zhang, P., Gorenstein derived categories, J. Algebra, 323, 2041-2057, 2010 · Zbl 1222.18005 · doi:10.1016/j.jalgebra.2010.01.027
[14] Gillespie, J., Gorenstein complexes and recollements from cotorsion pairs, Adv. Math., 291, 859-911, 2016 · Zbl 1343.18013 · doi:10.1016/j.aim.2016.01.004
[15] Gillespie, J., Duality pairs and stable module categories, J. Pure Appl. Algebra, 223, 3425-3435, 2019 · Zbl 1409.13034 · doi:10.1016/j.jpaa.2018.11.010
[16] Holm, H., Gorenstein homological dimensions, J. Pure Appl. Algebra, 189, 167-193, 2004 · Zbl 1050.16003 · doi:10.1016/j.jpaa.2003.11.007
[17] M.Y. Huerta, O. Mendoza and M A. Pérez, \(m\)-Periodic Gorenstein objects J. Algebra, 621 (2023) 1-40 · Zbl 1520.18011
[18] Iacob, A., Generalized Gorenstein modules, Algebra Colloquium, World Scientific Publishing Company, 29, 651-662, 2022 · Zbl 1502.18029 · doi:10.1142/S1005386722000463
[19] L.X. Mao and N.Q. Ding, Gorenstein FP-injective and Gorenstein flat modules, \(J.~Algebra Appl. 4 (2008) 497-506\) · Zbl 1165.16004
[20] J. Šaroch and J. Št’ovíček, Singular compactness and definability for \(\Sigma \)-cotorsion and Gorenstein modules, Sel. Math. 26 (2020) 23 (40 pages) · Zbl 1444.16010
[21] Wang, JP, A note on Gorenstein AC-projective and Gorenstein AC-flat modules, Colloq. Math., 170, 1-13, 2022 · Zbl 1502.18030 · doi:10.4064/cm8466-9-2021
[22] J.P. Wang and Z.X. Di, Relative Gorenstein rings and duality pairs, J. Algebra Appl. 19 (2020) 2050147 (22) · Zbl 1471.18016
[23] J.P. Wang, Z.K. Liu and X.X. Zhang, Weak global dimension and CM-freeness of rings, Sci. China Math. (Chin. Ser.), 52 (2022) 121-132
[24] Yang, XY; Liu, ZK, Strongly Gorenstein projective, injective and flat modules, J. Algebra, 320, 2659-2674, 2008 · Zbl 1173.16006 · doi:10.1016/j.jalgebra.2008.07.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.