×

Existence of singular isoperimetric regions in 8-dimensional manifolds. (English) Zbl 07872137

A well-know result states that local minimizers of the perimeter are smooth up to a closed, singular set of codimension \(8\). This is known to be sharp in virtue of the Simons cone example in \(\mathbb{R}^8\).
Consider now sets that minimize the perimeter with a volume constraint (i.e., isoperimetric sets). In the Euclidean setting, it is well-known that the only isoperimetric sets are balls, thus no isoperimetric set with singularities exists. In general in a space form, all isoperimetric sets, regardless of the given dimension, are smooth. In this paper the author exhibits isoperimetric sets with singularities in smooth, closed \(C^\infty\) Riemannian manifolds of dimension \(8\), see Theorem 1.1. It remains open whether such isoperimetric sets with singularities exist for real analytic Riemannian manifolds.

MSC:

53C40 Global submanifolds
49Q20 Variational problems in a geometric measure-theoretic setting

References:

[1] Allard, WK, On the first variation of a varifold, Ann. Math., 95, 417-491, 1972 · Zbl 0252.49028 · doi:10.2307/1970868
[2] Almgren, FJ Jr, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Am. Math. Soc., 4, 165, viii+199, 1976 · Zbl 0327.49043 · doi:10.1090/memo/0165
[3] Barbosa, J.L., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197(1), 123-138 (1988). doi:10.1007/BF01161634 · Zbl 0653.53045
[4] Barbosa, L.; Bérard, P., Eigenvalue and “twisted” eigenvalue problems, applications to CMC surfaces, J. Math. Pures Appl. (9), 79, 5, 427-450, 2000 · Zbl 0958.58006 · doi:10.1016/S0021-7824(00)00160-4
[5] Bombieri, E.; De Giorgi, E.; Giusti, E., Minimal cones and the Bernstein problem, Invent. Math., 7, 243-268, 1969 · Zbl 0183.25901 · doi:10.1007/BF01404309
[6] Cheung, L-F, A nonexistence theorem for stable constant mean curvature hypersurfaces, Manuscr. Math., 70, 2, 219-226, 1991 · Zbl 0734.53011 · doi:10.1007/BF02568372
[7] Chodosh, O., Engelstein, M., Spolaor, L.: The Riemannian quantitative isoperimetric inequality. J. Eur. Math. Soc. (2022)
[8] Fischer-Colbrie, D., On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math., 82, 1, 121-132, 1985 · Zbl 0573.53038 · doi:10.1007/BF01394782
[9] Flores, AEM; Nardulli, S., The isoperimetric problem of a complete Riemannian manifold with a finite number of C0-asymptotically Schwarzschild ends, Commun. Anal. Geom., 28, 7, 1577-1601, 2020 · Zbl 1456.53030 · doi:10.4310/CAG.2020.v28.n7.a3
[10] Gonzalez, E.; Massari, U.; Tamanini, I., On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J., 32, 1, 25-37, 1983 · Zbl 0486.49024 · doi:10.1512/iumj.1983.32.32003
[11] Grüter, M., Boundary regularity for solutions of a partitioning problem, Arch. Rational Mech. Anal., 97, 3, 261-270, 1987 · Zbl 0613.49029 · doi:10.1007/BF00250810
[12] Hardt, R.; Simon, L., Area minimizing hypersurfaces with isolated singularities, J. Reine Angew. Math., 362, 102-129, 1985 · Zbl 0577.49031 · doi:10.1515/crll.1985.362.102
[13] Ilmanen, T., A strong maximum principle for singular minimal hypersurfaces, Calc. Var. Partial Differ. Equ., 4, 5, 443-467, 1996 · Zbl 0863.49030 · doi:10.1007/BF01246151
[14] Kwong, K.-K.: Some sharp isoperimetric-type inequalities on Riemannian manifolds. J. Geom. Phys. 181(16), 104647 (2022). doi:10.1016/j.geomphys.2022.104647 · Zbl 1503.53074
[15] Maggi, F.: Sets of finite perimeter and geometric variational problems. Vol. 135. Cambridge Studies in Advanced Mathematics. An introduction to geometric measure theory. Cambridge University Press, Cambridge, 2012, pp. xx+454. ISBN: 978-1-107-02103-7. doi:10.1017/CBO9781139108133 · Zbl 1255.49074
[16] Morgan, F.; Johnson, DL, Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J., 49, 3, 1017-1041, 2000 · Zbl 1021.53020 · doi:10.1512/iumj.2000.49.1929
[17] Morgan, F., Ros, A.: Stable constant-mean-curvature hypersurfaces are area minimizing in small L1 neighborhoods. Interfaces Free Bound. 12(2), 151-155 (2010). doi:10.4171/IFB/230 · Zbl 1195.49055
[18] Schmidt, E., Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionenzahl, Math. Z., 49, 1-109, 1943 · Zbl 0028.31303 · doi:10.1007/BF01174192
[19] Schoen, R., Simon, L.: Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34(6), 741-797 (1981). doi:10.1002/cpa.3160340603 · Zbl 0497.49034
[20] Simon, L.: Lectures on Geometric Measure Theory. Vol. 3. Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, pp. vii+272 (1983) · Zbl 0546.49019
[21] Smale, N., Generic regularity of homologically area minimizing hypersurfaces in eight-dimensional manifolds, Commun. Anal. Geom., 1, 2, 217-228, 1993 · Zbl 0843.58027 · doi:10.4310/CAG.1993.v1.n2.a2
[22] Smale, N., Singular homologically area minimizing surfaces of codimension one in Riemannian manifolds, Invent. Math., 135, 1, 145-183, 1999 · Zbl 1022.53052 · doi:10.1007/s002220050282
[23] Wang, Z.: Deformations of Singular Minimal Hypersurfaces I, Isolated Singularities. arXiv preprint arXiv:2011.00548 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.