×

Cairo lattice with time-reversal non-invariant vertex couplings. (English) Zbl 07871281

Summary: We analyze the spectrum of a periodic quantum graph of the Cairo lattice form. The used vertex coupling violates the time reversal invariance and its high-energy behavior depends on the vertex degree parity; in the considered example both odd and even parities are involved. The presence of the former implies that the spectrum is dominated by gaps. In addition, we discuss two modifications of the model in which this is not the case, the zero limit of the length parameter in the coupling, and the sign switch of the coupling matrix at the vertices of degree three; while different they both yield the same probability that a randomly chosen positive energy lies in the spectrum.
{© 2024 IOP Publishing Ltd}

References:

[1] Berkolaiko, G.; Kuchment, P., Introduction to Quantum Graphs, 2013 · Zbl 1318.81005
[2] Kostenko, A.; Nicolussi, N., Laplacians on Infinite Graphs, 2022, Mem. EMS
[3] Středa, P.; Kučera, J., Orbital momentum and topological phase transformation, Phys. Rev. B, 92, 2015 · doi:10.1103/PhysRevB.92.235152
[4] Středa, P.; Výborný, K., Anomalous Hall conductivity and quantum friction, Phys. Rev. B, 107, 2023 · doi:10.1103/PhysRevB.107.014425
[5] Exner, P.; Tater, M., Quantum graphs with vertices of a preferred orientation, Phys. Lett. A, 382, 283-7, 2018 · Zbl 1387.81223 · doi:10.1016/j.physleta.2017.11.028
[6] Lawrie, T.; Tanner, G.; Chronopoulos, D., A quantum graph approach to metamaterial design, Sci. Rep., 12, 2022 · doi:10.1038/s41598-022-22265-2
[7] Band, R.; Berkolaiko, G., Universality of the momentum band density of periodic networks, Phys. Rev. Lett., 113, 2013 · doi:10.1103/PhysRevLett.111.130404
[8] Exner, P.; Tater, M., Quantum graphs: self-adjoint and yet exhibiting a nontrivial \(PT\)-symmetry, Phys. Lett. A, 416, 2021 · Zbl 07412688 · doi:10.1016/j.physleta.2021.127669
[9] Baradaran, M.; Exner, P.; Lipovský, J., Magnetic square lattice with vertex coupling of a preferred orientation, Ann. Phys., NY, 454, 2023 · Zbl 1523.81082 · doi:10.1016/j.aop.2023.169339
[10] Baradaran, M.; Exner, P., Kagome network with vertex coupling of a preferred orientation, J. Math. Phys., 63, 2022 · Zbl 1509.81480 · doi:10.1063/5.0093546
[11] Exner, P.; Lipovský, J., Topological bulk-edge effects in quantum graph transport, Phys. Lett. A, 384, 2020 · Zbl 1448.81326 · doi:10.1016/j.physleta.2020.126390
[12] Behrndt, J.; Luger, A., On the number of negative eigenvalues of the Laplacian on a metric graph, J. Phys. A: Math. Theor., 43, 2010 · Zbl 1204.81076 · doi:10.1088/1751-8113/43/47/474006
[13] Baradaran, M.; Exner, P.; Tater, M., Spectrum of periodic chain graphs with time-reversal non-invariant vertex coupling, Ann. Phys., NY, 443, 2022 · Zbl 07565276 · doi:10.1016/j.aop.2022.168992
[14] Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers, 1979, Oxford University Press · Zbl 0423.10001
[15] Schmidt, W. M., Diophantine Approximations and Diophantine Equations (Lecture Notes in Mathematics vol 1467), 1991, Springer · Zbl 0754.11020
[16] Berkolaiko, G.; Latushkin, Y.; Sukhtaiev, S., Limits of quantum graph operators with shrinking edges, Adv. Math., 352, 632-69, 2019 · Zbl 1422.81101 · doi:10.1016/j.aim.2019.06.017
[17] Borisov, D. I., Spectra of elliptic operators on quantum graphs with small edges, Mathematics, 9, 1874, 2021 · doi:10.3390/math9161874
[18] Cacciapuoti, C., Scale invariant effective Hamiltonians for a graph with a small compact core, Symmetry, 11, 359, 2019 · Zbl 1423.81082 · doi:10.3390/sym11030359
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.