×

Strong Gelfand pairs of \(\mathrm{SL}(2, p^n)\). (English) Zbl 07870859

A strong Gelfand pair \((G, H)\) is a finite group \(G\) together with a subgroup \(H\) such that every irreducible (complex) character of \(H\) induces a multiplicity-free character of \(G\). In other words, for any \(\chi \in \mathrm{Irr}(G)\) and any \(\psi \in \mathrm{Irr}(H)\) we have \([\chi, \psi^G]_G\leq 1\). Equivalently, \((G, H)\) is a strong Gelfand pair if and only if the Schur ring determined by the \(H\)-classes \(g^H = \{h^{-1} g h : h\in H\}\), where \(g \in G\), is commutative.
Extending the results of [A. Burton and S. Humphries, J. Algebra Appl. 22, No. 6, Article ID 2350133, 13 p. (2023; Zbl 1517.20070)], in this paper the authors classify the strong Gelfand pairs \((G,H)\) when \(G=\mathrm{SL}(2,q)\).
In fact, fix the following notation:
\(C_n\) is the cyclic subgroup of order \(n\);
\(B=C_q\rtimes C_{q-1}\) is the Borel subgroup of upper triangular matrices;
\(B_2\leq B\) is the subgroup of \(B\) whose diagonal entries are squares in \(\mathbb{F}_q^\times\);
\(D_{2(q+1)}\) is the maximal dihedral subgroup of order \(2(q+1)\) (when \(p=2\)).
Then, the authors prove the following result. Let \(q=p^n > 11\), where \(p\) is a prime, and let \(G=\mathrm{SL}(2,q)\). Up to conjugacy, the strong Gelfand pairs \((G,H)\), where \(G\neq H\), are exactly those with:
\((i)\)
\(H=B\) if \(p\equiv 1 \pmod 4\);
\((ii)\)
\(H\in \{B, B_2\}\) if \(p\equiv 3 \pmod 4\);
\((iii)\)
\(H \in \{B, D_{2(q+1)}, C_{q+1}\}\) if \(p=2\).
A full classification is also given for the cases \(q=p\in \{2,3,5,7,9,11\}\).

MSC:

20G40 Linear algebraic groups over finite fields
20C15 Ordinary representations and characters
20G05 Representation theory for linear algebraic groups

Citations:

Zbl 1517.20070

Software:

Magma
Full Text: DOI

References:

[1] Anderson, G., Humphries, S. P., Nicholson, N. (2021). Strong Gelfand pairs of symmetric groups. J. Algebra Appl.20(4):Paper No. 2150054, 22 pp. DOI: . · Zbl 1535.20072
[2] Burton, A., Humphries, S.Strong Gelfand Pairs of SL \((2,p)\). J. Algebra Appl. DOI: .
[3] Ceccherini-Silberstein, T., Scarabotti, F., Tolli, F. (2008). Harmonic Analysis on Finite Groups. In: Representation Theory, Gelfand Pairs and Markov Chains, Vol. 108. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, xiv + 440 pp. · Zbl 1149.43001
[4] Dennis, T. (1974). Spherical functions on finite groups. J. Algebra29:65-76. · Zbl 0293.20006
[5] Dornhoff, L. (1971) Group Representation Theory. Part A: Ordinary Representation Theory. Pure and Applied Mathematics. Vol. 7. New York: Marcel Dekker, Inc., pp. vii + 254. · Zbl 0227.20002
[6] Flicker, Y. Z. (2019). Conjugacy classes of finite subgroups of \(\text{SL}(2,F),\text{SL}(3,\overline{F})\). J. Théorie des Nombres de Bordeaux31(3):555-571. · Zbl 1441.14150
[7] Humphries, S., Kennedy, C., Rode, E. (2015). The total character of a finite group. Algebra Colloq.22(Special Issue no. 1):775-778. (Reviewer: Silvio Dolfi) DOI: . · Zbl 1334.20004
[8] James, G., Liebeck, M. (2001). Representations and Characters of Groups, 2nd ed. Cambridge: Cambridge University Press. · Zbl 0981.20004
[9] Karlof, J. (1975). The subclass algebra associated with a finite group and subgroup. Amer. Math. Soc. 207:329-341. DOI: . · Zbl 0308.20006
[10] Prajapati, S. K.; Sarma, R. (2016). Total character of a group G with \((G,Z(G))\) as a generalized Camina pair. Can. Math. Bull.59(2):392-402. · Zbl 1341.20005
[11] Prajapati, S. K., Sury, B. (2014). On the total character of finite groups. Int. J. Group Theory3(3):47-67. · Zbl 1330.20009
[12] Steinberg, R. (1951). The Representations of \(\text{GL}(3,q),\text{GL}(4,q),\text{PGL}(3,q)\), and \(\text{PGL}(4,q)\). Can. J. Math.3:225-235. · Zbl 0042.25602
[13] Suzuki, M. (1982). Group Theory I, 1st ed. Berlin; Heidelberg: Springer-Verlag. · Zbl 0472.20001
[14] Bosma, W., Cannon, J., Playoust, C. (1997). The Magma algebra system. I. The user language. J. Symbolic Comput. 24:235-265. DOI: . · Zbl 0898.68039
[15] Wikipedia contributors. (2021). “Gelfand pair.”Wikipedia, The Free Encyclopedia, 25 May 2021.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.