×

Black holes, conformal symmetry, and fundamental fields. (English) Zbl 07870441

Summary: Cosmic censorship protects the outside world from black hole singularities and paves the way for assigning entropy to gravity at the event horizons. We point out a tension between cosmic censorship and the quantum backreacted geometry of Schwarzschild black holes, induced by vacuum polarization and driven by the conformal anomaly. A similar tension appears for the Weyl curvature hypothesis at the Big Bang singularity. We argue that the requirement of exact conformal symmetry resolves both conflicts and has major implications for constraining the set of fundamental constituents of the Standard Model.
{© 2024 IOP Publishing Ltd}

MSC:

83C75 Space-time singularities, cosmic censorship, etc.
83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] Penrose, R., Phys. Rev. Lett., 14, 57, 1965 · Zbl 0125.21206 · doi:10.1103/PhysRevLett.14.57
[2] Hawking, S. W.; Penrose, R., Proc. R. Soc. A, 314, 529, 1970 · Zbl 0954.83012 · doi:10.1098/rspa.1970.0021
[3] Penrose, R., Riv. Nuevo Cim., 1, 257-76, 1969 · Zbl 1001.83040 · doi:10.1023/A:1016578408204
[4] Penrose, R., Ann. New York Acad. Sci., 224, 125, 1973 · doi:10.1111/j.1749-6632.1973.tb41447.x
[5] Penrose, R.; Hawking, S. W.; Israel, W., Singularities and time-asymmetry, General Relativity: An Einstein Centenary, 1979, Cambridge University Press · Zbl 0424.53001
[6] Tod, K. P., Class. Quantum Grav., 20, 521, 2003 · Zbl 1034.83032 · doi:10.1088/0264-9381/20/3/309
[7] Schwartz, M. D., Quantum Field Theory and the Standard Model, 2014, Cambridge University Press
[8] Capper, D. M.; Duff, M. J., Nuovo Cimento A, 23, 173, 1974 · doi:10.1007/BF02748300
[9] Deser, S.; Duff, M.; Isham, C. J., Nucl. Phys. B, 111, 45, 1976 · Zbl 0967.81529 · doi:10.1016/0550-3213(76)90480-6
[10] Birrell, N. D.; Davies, P. C W., Quantum Fields in Curved Space, 1982, Cambridge University Press · Zbl 0476.53017
[11] Parker, L.; Toms, D. J., Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, 2009, Cambridge University Press · Zbl 1180.81001
[12] Hu, B. L B.; Verdaguer, E., Semiclassical and Stochastic Gravity: Quantum Field Effects on Curved Spacetime, 2020, Cambridge University Press · Zbl 1481.83004
[13] Duff, M. J., Class. Quantum Grav., 11, 1387, 1994 · Zbl 0808.53063 · doi:10.1088/0264-9381/11/6/004
[14] Cardoso, V.; Pani, P., Living Rev. Relativ., 22, 4, 2019 · Zbl 1442.83021 · doi:10.1007/s41114-019-0020-4
[15] Boyle, L.; Turok, N., Cancelling the vacuum energy and Weyl anomaly in the standard model with dimension-zero scalar fields, 2021
[16] Miller, J.; Volovik, G. E.; Zubkov, M. A., Phys. Rev. D, 106, 2022 · doi:10.1103/PhysRevD.106.015021
[17] Minkowski, P., Phys. Lett. B, 67, 421, 1977 · doi:10.1016/0370-2693(77)90435-X
[18] Burguess, C.; Moore, G., The Standard Model: A Primer, 2006, Cambridge University Press
[19] Parker, L1966The creation of particles in an expanding UniversePhD ThesisHarvard University
[20] Parker, L., Phys. Rev. Lett., 21, 562, 1968 · doi:10.1103/PhysRevLett.21.562
[21] Parker, L., Phys. Rev., 183, 1057, 1969 · Zbl 0186.58603 · doi:10.1103/PhysRev.183.1057
[22] Parker, L., Phys. Rev. D, 3, 346, 1971 · doi:10.1103/PhysRevD.3.346
[23] Olbermann, H., Class. Quantum Grav., 24, 5011, 2007 · Zbl 1206.83171 · doi:10.1088/0264-9381/24/20/007
[24] Banerjee, R.; Niedermaier, M., J. Math. Phys., 61, 2020 · Zbl 1455.83013 · doi:10.1063/5.0019311
[25] Nadal-Gisbert, S.; Navarro-Salas, J.; Pla, S., Phys. Rev. D, 107, 2023 · doi:10.1103/PhysRevD.107.085018
[26] Hooft, G’t, Int. J. Mod. Phys. D, 24, 2015 · Zbl 1329.81236 · doi:10.1142/S0218271815430014
[27] Candelas, P., Phys. Rev. D, 21, 2185, 1980 · doi:10.1103/PhysRevD.21.2185
[28] Boulware, D. G., Phys. Rev. D, 11, 1404, 1975 · doi:10.1103/PhysRevD.11.1404
[29] Howard, K. W.; Candelas, P., Phys. Rev. Lett., 53, 403, 1984 · doi:10.1103/PhysRevLett.53.403
[30] Anderson, P. R.; Hiscock, W. A.; Samuel, D. A., Phys. Rev. D, 51, 4337, 1995 · Zbl 0966.81541 · doi:10.1103/PhysRevD.51.4337
[31] Levi, A.; Ori, A., Phys. Rev. D, 91, 2015 · doi:10.1103/PhysRevD.91.104028
[32] Taylor, P.; Breen, C.; Ottewill, A., Phys. Rev. D, 106, 2022 · doi:10.1103/PhysRevD.106.065023
[33] Harvey, J. A.; Strominger, A., Quantum aspects of black holes, 1992
[34] Strominger, A., Les houches lectures on black holes, 1995
[35] Mukhanov, V.; Wipf, A.; Zelnikov, A., Phys. Lett., 332, 283, 1994 · doi:10.1016/0370-2693(94)91255-6
[36] Fabbri, A.; Navarro-Salas, J., Modeling Black Hole Evaporation, 2005, ICP-World Scientific
[37] Philippe, F.; Mathieu, P.; Senechal, D., Conformal Field Theory, 1996, Springer
[38] Fabbri, A.; Farese, S.; Navarro-Salas, J.; Olmo, G.; Sanchis-Alepuz, H., Phys. Rev. D, 73, 2006 · doi:10.1103/PhysRevD.73.104023
[39] Arrechea, J.; Barceló, C.; Carballo-Rubio, R.; Garay, L. J., Phys. Rev. D, 101, 2020 · doi:10.1103/PhysRevD.101.064059
[40] Ho, P. M.; Matsuo, Y., Class. Quantum Grav., 35, 2018 · Zbl 1386.83083 · doi:10.1088/1361-6382/aaac8f
[41] Friedan, D.; Qiu, Z.; Shenker, S., Phys. Rev. Lett., 52, 1575, 1984 · doi:10.1103/PhysRevLett.52.1575
[42] Polyakov, A. M., Phys. Lett. B, 103, 207, 1981 · doi:10.1016/0370-2693(81)90743-7
[43] Casals, M.; Fabbri, A.; Martínez, C.; Zanelli, J., Phys. Rev. Lett., 118, 2017 · doi:10.1103/PhysRevLett.118.131102
[44] Casals, M.; Fabbri, A.; Martínez, C.; Zanelli, J., Phys. Rev. D, 99, 2019 · doi:10.1103/PhysRevD.99.104023
[45] Beltrán-Palau, P.; del Río, A.; Navarro-Salas, J., Phys. Rev. D, 107, 2023 · doi:10.1103/PhysRevD.107.085023
[46] Arrechea, J.; Barceló, C.; Carballo-Rubio, R.; Garay, L. J., Phys. Rev. D, 107, 2023 · doi:10.1103/PhysRevD.107.085005
[47] Berthiere, C.; Sarkar, D.; Solodukhin, S. N., Phys. Lett. B, 786, 21, 2018 · Zbl 1404.83038 · doi:10.1016/j.physletb.2018.09.027
[48] Christensen, S. M.; Fulling, S. A., Phys. Rev. D, 15, 2088, 1977 · doi:10.1103/PhysRevD.15.2088
[49] Bogolubov, N. N.; Logunov, A. A.; Oksak, A. I.; Todorov, I. T., General Principles of Quantum Field Theory, 1990, Kluwer Academic Publishers · Zbl 0732.46040
[50] Gusynin, V. P., Phys. Lett. B, 225, 233, 1989 · doi:10.1016/0370-2693(89)90811-3
[51] Drewes, M., Int. J. Mod. Phys. E, 22, 2013 · doi:10.1142/S0218301313300191
[52] Boyle, L.; Finn, K.; Turok, N., Phys. Rev. Lett., 121, 2018 · doi:10.1103/PhysRevLett.121.251301
[53] Tod, P., J. Phys. Conf. Ser., 229, 2010 · doi:10.1088/1742-6596/229/1/012013
[54] del Río, A.; Ferreiro, A.; Navarro-Salas, J.; Torrentí, F., Phys. Rev. D, 95, 2017 · doi:10.1103/PhysRevD.95.105003
[55] Newman, R P A C1993Proc. R. Soc. A443473; Newman, R P A C1993Proc. R. Soc. A443493
[56] Ade, P. A R., Astron. Astrophys., 594, A13, 2016
[57] Aghanim, N., Astron. Astrophys., 641, A1, 2020
[58] Wald, R. M., Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, 1995, University of Chicago Press
[59] Beltrán-Palau, P.; Nadal-Gisbert, S.; Navarro-Salas, J.; Pla, S., J. Phys. Conf. Ser., 2531, 2023 · doi:10.1088/1742-6596/2531/1/012009
[60] Chung, D. J H.; Kolb, E. W.; Riotto, A., Phys. Rev. D, 59, 1998 · doi:10.1103/PhysRevD.59.023501
[61] Abbott, B Pet al.(LIGO Scientific Collaboration and Virgo Collaboration)2016Phys. Rev. Lett.116061102; Abbott, B Pet al.2016Phys. Rev. Lett.116241103
[62] Pretorius, F., Phys. Rev. Lett., 95, 2005 · doi:10.1103/PhysRevLett.95.121101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.