×

An unfitted high-order HDG method for two-fluid Stokes flow with exact NURBS geometries. (English) Zbl 07870138

Summary: A high-order, degree-adaptive hybridizable discontinuous Galerkin (HDG) method is presented for two-fluid incompressible Stokes flows, with boundaries and interfaces described using NURBS. The NURBS curves are embedded in a fixed Cartesian grid, yielding an unfitted HDG scheme capable of treating the exact geometry of the boundaries/interfaces, circumventing the need for fitted, high-order, curved meshes. The framework of the NURBS-enhanced finite element method (NEFEM) is employed for accurate quadrature along immersed NURBS and in elements cut by NURBS curves. A Nitsche’s formulation is used to enforce Dirichlet conditions on embedded surfaces, yielding unknowns only on the mesh skeleton as in standard HDG, without introducing any additional degree of freedom on non-matching boundaries/interfaces. The resulting unfitted HDG-NEFEM method combines non-conforming meshes, exact NURBS geometry and high-order approximations to provide high-fidelity results on coarse meshes, independent of the geometric features of the domain. Numerical examples illustrate the optimal accuracy and robustness of the method, even in the presence of badly cut cells or faces, and its suitability to simulate microfluidic systems from CAD geometries.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
76Mxx Basic methods in fluid mechanics
76Dxx Incompressible viscous fluids

Software:

NURBS; CutFEM

References:

[1] Gross, S.; Reusken, A., Numerical Methods for Two-Phase Incompressible Flows, vol. 40, 2011, Springer Science & Business Media · Zbl 1222.76002
[2] Zlotnik, S.; Díez, P., Hierarchical X-FEM for n-phase flow \((n > 2)\), Comput. Methods Appl. Mech. Eng., 198, 2329-2338, 2009 · Zbl 1229.76060
[3] Heimann, F.; Engwer, C.; Ippisch, O.; Bastian, P., An unfitted interior penalty discontinuous Galerkin method for incompressible Navier-Stokes two-phase flow, Int. J. Numer. Methods Fluids, 71, 269-293, 2013 · Zbl 1430.76364
[4] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H. T.; Kroll, N.; May, G.; Persson, P.-O.; van Leer, B.; Visbal, M., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 811-845, 2013 · Zbl 1455.76007
[5] Fabien, M. S.; Knepley, M. G.; Rivière, B. M., A hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media, Int. J. Numer. Methods Eng., 116, 161-177, 2018 · Zbl 07865056
[6] Costa-Solé, A.; Ruiz-Gironés, E.; Sarrate, J., An HDG formulation for incompressible and immiscible two-phase porous media flow problems, Int. J. Comput. Fluid Dyn., 33, 137-148, 2019 · Zbl 07474483
[7] Kirby, R.; Sherwin, S. J.; Cockburn, B., To CG or to HDG: a comparative study, J. Sci. Comput., 51, 183-212, 2011 · Zbl 1244.65174
[8] Huerta, A.; Angeloski, A.; Roca, X.; Peraire, J., Efficiency of high-order elements for continuous and discontinuous Galerkin methods, Int. J. Numer. Methods Eng., 96, 529-560, 2013 · Zbl 1352.65512
[9] Woopen, M.; Balan, A.; May, G.; Schütz, J., A comparison of hybridized and standard DG methods for target-based hp-adaptive simulation of compressible flow, Comput. Fluids, 98, 3-16, 2014 · Zbl 1391.76368
[10] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys., 138, 251-285, 1997 · Zbl 0902.76056
[11] Sevilla, R.; Fernández-Méndez, S.; Huerta, A., NURBS-enhanced finite element method for Euler equations, Int. J. Numer. Methods Fluids, 57, 1051-1069, 2008 · Zbl 1140.76023
[12] Sevilla, R.; Fernández-Méndez, S.; Huerta, A., NURBS-enhanced finite element method (NEFEM), Int. J. Numer. Methods Eng., 76, 56-83, 2008 · Zbl 1162.65389
[13] Sevilla, R.; Fernández-Méndez, S.; Huerta, A., 3D NURBS-enhanced finite element method (NEFEM), Int. J. Numer. Methods Eng., 88, 103-125, 2011 · Zbl 1242.78032
[14] Sevilla, R.; Rees, L.; Hassan, O., The generation of triangular meshes for NURBS-enhanced FEM, Int. J. Numer. Methods Eng., 108, 941-968, 2016 · Zbl 07870076
[15] Zou, X.; Lo, S.; Sevilla, R.; Hassan, O.; Morgan, K., The generation of 3D surface meshes for NURBS-enhanced FEM, Comput. Aided Des., Article 103653 pp., 2023
[16] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261, 2005 · Zbl 1117.76049
[17] Barrett, J. W.; Elliott, C. M., Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal., 7, 283-300, 1987 · Zbl 0629.65118
[18] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method for elliptic interface problems, Comput. Methods Appl. Mech. Eng., 191, 5537-5552, 2002 · Zbl 1035.65125
[19] Hansbo, A.; Hansbo, P., A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. Methods Appl. Mech. Eng., 193, 3523-3540, 2004 · Zbl 1068.74076
[20] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng., 111, 283-303, 1994 · Zbl 0845.73078
[21] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 112, 133-148, 1994 · Zbl 0845.76069
[22] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Comput. Methods Appl. Mech. Eng., 199, 2680-2686, 2010 · Zbl 1231.65207
[23] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math., 62, 328-341, 2012 · Zbl 1316.65099
[24] Burman, E.; Claus, S.; Hansbo, P.; Larson, M. G.; Massing, A., CutFEM: discretizing geometry and partial differential equations, Int. J. Numer. Methods Eng., 104, 472-501, 2015 · Zbl 1352.65604
[25] Gürkan, C.; Massing, A., A stabilized cut discontinuous Galerkin framework for elliptic boundary value and interface problems, Comput. Methods Appl. Mech. Eng., 348, 466-499, 2019 · Zbl 1440.65208
[26] Parvizian, J.; Düster, A.; Rank, E., Finite cell method: h- and p-extension for embedded domain problems in solid mechanics, Comput. Mech., 41, 121-133, 2007 · Zbl 1162.74506
[27] Badia, S.; Verdugo, F.; Martin, A., The aggregated unfitted finite element method for elliptic problems, Comput. Methods Appl. Mech. Eng., 336, 533-553, 2018 · Zbl 1440.65175
[28] Main, A.; Scovazzi, G., The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems, J. Comput. Phys., 372, 972-995, 2018 · Zbl 1415.76457
[29] de Prenter, F.; Verhoosel, C.; van Zwieten, G.; van Brummelen, E., Condition number analysis and preconditioning of the finite cell method, Comput. Methods Appl. Mech. Eng., 316, 297-327, 2017 · Zbl 1439.65137
[30] Burman, E., Ghost penalty, C. R. Math., 348, 1217-1220, 2010 · Zbl 1204.65142
[31] Johansson, A.; Larson, M. G., A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary, Numer. Math., 123, 607-628, 2013 · Zbl 1269.65126
[32] Navarro-García, H.; Sevilla, R.; Nadal, E.; Ródenas, J. J., High-order discontinuous Galerkin method for time-domain electromagnetics on geometry-independent Cartesian meshes, Int. J. Numer. Methods Eng., 122, 7632-7663, 2021 · Zbl 07863854
[33] de Prenter, F.; Verhoosel, C.; van Brummelen, E.; Larson, M.; Badia, S., Stability and conditioning of immersed finite element methods: analysis and remedies, Arch. Comput. Methods Eng., 1-40, 2023
[34] Schillinger, D.; Ruess, M., The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch. Comput. Methods Eng., 22, 391-455, 2015 · Zbl 1348.65056
[35] Lehrenfeld, C., High order unfitted finite element methods on level set domains using isoparametric mappings, Comput. Methods Appl. Mech. Eng., 300, 716-733, 2016 · Zbl 1425.65168
[36] Müller, B.; Krämer-Eis, S.; Kummer, F.; Oberlack, M., A high-order discontinuous Galerkin method for compressible flows with immersed boundaries, Int. J. Numer. Methods Eng., 110, 3-30, 2017 · Zbl 1380.65384
[37] Larson, M.; Zahedi, S., Stabilization of high order cut finite element methods on surfaces, IMA J. Numer. Anal., 40, 1702-1745, 2020 · Zbl 1466.65195
[38] Atallah, N.; Canuto, C.; Scovazzi, G., The high-order shifted boundary method and its analysis, Comput. Methods Appl. Mech. Eng., 394, Article 114885 pp., 2022 · Zbl 1507.65230
[39] Badia, S.; Neiva, E.; Verdugo, F., Robust high-order unfitted finite elements by interpolation-based discrete extension, Comput. Math. Appl., 127, 105-126, 2022 · Zbl 1524.65749
[40] Schillinger, D.; Rank, E., An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry, Comput. Methods Appl. Mech. Eng., 200, 3358-3380, 2011 · Zbl 1230.74197
[41] Ruess, M.; Schillinger, D.; Bazilevs, Y.; Varduhn, V.; Rank, E., Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method, Int. J. Numer. Methods Eng., 95, 811-846, 2013 · Zbl 1352.65643
[42] Legrain, G., A NURBS enhanced extended finite element approach for unfitted CAD analysis, Comput. Mech., 52, 913-929, 2013 · Zbl 1311.65017
[43] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J.; Aggarwal, A.; Bazilevs, Y.; Sacks, M.; Hughes, T., An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Eng., 284, 1005-1053, 2015 · Zbl 1423.74273
[44] Hoang, T.; Verhoosel, C.; Qin, C.-Z.; Auricchio, F.; Reali, A.; van Brummelen, E., Skeleton-stabilized immersogeometric analysis for incompressible viscous flow problems, Comput. Methods Appl. Mech. Eng., 344, 421-450, 2019 · Zbl 1440.76069
[45] Marco, O.; Sevilla, R.; Zhang, Y.; Rodenas, J.; Tur, M., Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry, Int. J. Numer. Methods Eng., 103, 445-468, 2015 · Zbl 1352.65592
[46] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 1319-1365, 2009 · Zbl 1205.65312
[47] Piegl, L.; Tiller, W., The NURBS Book, Monographs in Visual Communication, 1995, Springer: Springer Berlin, Heidelberg · Zbl 0828.68118
[48] Sevilla, R.; Huerta, A., HDG-NEFEM with degree adaptivity for Stokes flows, J. Sci. Comput., 77, 1953-1980, 2018 · Zbl 1497.65236
[49] Dong, H.; Wang, B.; Xie, Z.; Wang, L.-L., An unfitted hybridizable discontinuous Galerkin method for the Poisson interface problem and its error analysis, IMA J. Numer. Anal., 37, 444-476, 2016 · Zbl 1433.65287
[50] Manríquez, J.; Nguyen, N.-C.; Solano, M., A dissimilar non-matching HDG discretization for Stokes flows, Comput. Methods Appl. Mech. Eng., 399, Article 115292 pp., 2022 · Zbl 1507.76116
[51] Gürkan, C.; Kronbichler, M.; Fernández-Méndez, S., eXtended hybridizable discontinuous Galerkin with Heaviside enrichment for heat bimaterial problems, J. Sci. Comput., 72, 542-567, 2017 · Zbl 1377.65150
[52] Gürkan, C.; Kronbichler, M.; Fernández-Méndez, S., eXtended hybridizable discontinuous Galerkin for incompressible flow problems with unfitted meshes and interfaces, Int. J. Numer. Methods Eng., 117, 756-777, 2019 · Zbl 07865236
[53] Burman, E.; Elfverson, D.; Hansbo, P.; Larson, M.; Larsson, K., Hybridized CutFEM for elliptic interface problems, SIAM J. Sci. Comput., 41, A3354-A3380, 2019 · Zbl 1435.65193
[54] Burman, E.; Ern, A., An unfitted hybrid high-order method for elliptic interface problems, SIAM J. Numer. Anal., 56, 1525-1546, 2018 · Zbl 1448.65201
[55] Burman, E.; Cicuttin, M.; Delay, G.; Ern, A., An unfitted hybrid high-order method with cell agglomeration for elliptic interface problems, SIAM J. Sci. Comput., 43, A859-A882, 2021 · Zbl 1475.65186
[56] Burman, E.; Delay, G.; Ern, A., An unfitted hybrid high-order method for the Stokes interface problem, IMA J. Numer. Anal., 41, 2362-2387, 2021 · Zbl 1518.65126
[57] Piccardo, S.; Ern, A., Surface tension effects between two immiscible Stokes fluids: a computational study using unfitted hybrid high-order methods and a level-set scheme, SMAI J. Comput. Math., 9, 257-283, 2023 · Zbl 07829164
[58] Rogers, D. F., An Introduction to NURBS: with Historical Perspective, 2001, Morgan Kaufmann Publishers Inc.: Morgan Kaufmann Publishers Inc. San Francisco, CA
[59] Montlaur, A.; Fernandez-Mendez, S.; Huerta, A., Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations, Int. J. Numer. Methods Fluids, 57, 1071-1092, 2008 · Zbl 1338.76062
[60] Quarteroni, A., Numerical Models for Differential Problems, 2017, Springer International Publishing: Springer International Publishing Cham
[61] Jasak, H., Error analysis and estimation in the Finite Volume method with applications to fluid flows, 1996, Imperial College, University of London, Ph.D. thesis
[62] Sevilla, R.; Giacomini, M.; Huerta, A., A face-centred finite volume method for second-order elliptic problems, Int. J. Numer. Methods Eng., 115, 986-1014, 2018 · Zbl 07865134
[63] Giacomini, M.; Sevilla, R.; Huerta, A., Tutorial on hybridizable discontinuous Galerkin (HDG) formulation for incompressible flow problems, (Lorenzis, L. D.; Düster, A., Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids. Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids, CISM International Centre for Mechanical Sciences, vol. 599, 2020, Springer International Publishing), 163-201 · Zbl 1481.76137
[64] Sevilla, R.; Huerta, A., Tutorial on hybridizable discontinuous Galerkin (HDG) for second-order elliptic problems, (Schröder, J.; Wriggers, P., Advanced Finite Element Technologies. Advanced Finite Element Technologies, CISM International Centre for Mechanical Sciences, vol. 566, 2016, Springer International Publishing), 105-129 · Zbl 1356.65238
[65] Giacomini, M.; Sevilla, R.; Huerta, A., HDGlab: an open-source implementation of the hybridisable discontinuous Galerkin method in Matlab, Arch. Comput. Methods Eng., 28, 1941-1986, 2021
[66] Ern, A.; Stephansen, A.; Zunino, P., A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity, IMA J. Numer. Anal., 29, 235-256, 2009 · Zbl 1165.65074
[67] Annavarapu, C.; Hautefeuille, M.; Dolbow, J., A robust Nitsche’s formulation for interface problems, Comput. Methods Appl. Mech. Eng., 225, 44-54, 2012 · Zbl 1253.74096
[68] Giacomini, M., An equilibrated fluxes approach to the certified descent algorithm for shape optimization using conforming finite element and discontinuous Galerkin discretizations, J. Sci. Comput., 75, 560-595, 2018 · Zbl 1388.49046
[69] Sevilla, R.; Duretz, T., A face-centred finite volume method for high-contrast Stokes interface problems, Int. J. Numer. Methods Eng., 124, 3709-3732, 2023 · Zbl 07772286
[70] Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, (Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol. 36, 1971, Springer), 9-15 · Zbl 0229.65079
[71] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 2002 · Zbl 1008.65080
[72] Arnold, D., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 742-760, 1982 · Zbl 0482.65060
[73] Stenberg, R., On some techniques for approximating boundary conditions in the finite element method, J. Comput. Appl. Math., 63, 139-148, 1995 · Zbl 0856.65130
[74] Donea, J.; Huerta, A., Finite Element Methods for Flow Problems, 2003, John Wiley & Sons: John Wiley & Sons Chichester
[75] Sevilla, R.; Giacomini, M.; Karkoulias, A.; Huerta, A., A superconvergent hybridisable discontinuous Galerkin method for linear elasticity, Int. J. Numer. Methods Eng., 116, 91-116, 2018 · Zbl 07865052
[76] Giacomini, M.; Karkoulias, A.; Sevilla, R.; Huerta, A., A superconvergent HDG method for Stokes flow with strongly enforced symmetry of the stress tensor, J. Sci. Comput., 77, 1679-1702, 2018 · Zbl 1404.76162
[77] La Spina, A.; Kronbichler, M.; Giacomini, M.; Wall, W.; Huerta, A., A weakly compressible hybridizable discontinuous Galerkin formulation for fluid-structure interaction problems, Comput. Methods Appl. Mech. Eng., 372, Article 113392 pp., 2020 · Zbl 1506.74415
[78] Vila-Pérez, J.; Giacomini, M.; Sevilla, R.; Huerta, A., Hybridisable discontinuous Galerkin formulation of compressible flows, Arch. Comput. Methods Eng., 28, 753-784, 2021
[79] Nguyen, N. C.; Peraire, J.; Cockburn, B., A hybridizable discontinuous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Eng., 199, 582-597, 2010 · Zbl 1227.76036
[80] Cockburn, B.; Gopalakrishnan, J.; Nguyen, N.; Peraire, J.; Sayas, F.-J., Analysis of HDG methods for Stokes flow, Math. Comput., 80, 723-760, 2011 · Zbl 1410.76164
[81] Giorgiani, G.; Fernández-Méndez, S.; Huerta, A., Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations, Comput. Fluids, 98, 196-208, 2014 · Zbl 1391.76332
[82] Giacomini, M.; Sevilla, R., Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity, SN Appl. Sci., 1, 1047, 2019
[83] Joe, B.; Simpson, R. B., Corrections to Lee’s visibility polygon algorithm, BIT Numer. Math., 27, 458-473, 1987 · Zbl 0643.68098
[84] Lorensen, W.; Cline, H., Marching cubes: a high resolution 3D surface construction algorithm, (Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, ACM SIGGRAPH Computer Graphics, 1987, Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 163-169
[85] Marco, O.; Ródenas, J.; Navarro-Jiménez, J.; Tur, M., Robust h-adaptive meshing strategy considering exact arbitrary CAD geometries in a Cartesian grid framework, Comput. Struct., 193, 87-109, 2017
[86] Badia, S.; Droniou, J.; Yemm, L., Conditioning of a hybrid high-order scheme on meshes with small faces, J. Sci. Comput., 92, 2022 · Zbl 1492.65299
[87] Rhebergen, S.; Wells, G., Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations, J. Sci. Comput., 77, 1936-1952, 2018 · Zbl 1407.65297
[88] Muralikrishnan, S.; Bui-Thanh, T.; Shadid, J. N., A multilevel approach for trace system in HDG discretizations, J. Comput. Phys., 407, Article 109240 pp., 2020 · Zbl 07504711
[89] Wang, J.; Zhang, N.; Chen, J.; Rodgers, V. G.J.; Brisk, P.; Grover, W. H., Finding the optimal design of a passive microfluidic mixer, Lab Chip, 19, 3618-3627, 2019
[90] Avraam, D.; Payatakes, A., Flow regimes and relative permeabilities during steady-state two-phase flow in porous media, J. Fluid Mech., 293, 207-236, 1995
[91] Luévano-Rivas, O.; Valdés-Parada, F., Upscaling immiscible two-phase dispersed flow in homogeneous porous media: a mechanical equilibrium approach, Chem. Eng. Sci., 126, 116-131, 2015
[92] Janetti, E. B.; Riva, M.; Guadagnini, A., Effects of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells, Water (Switzerland), 9, 2017
[93] Stavrev, A.; Knechtges, P.; Elgeti, S.; Huerta, A., Space-time NURBS-enhanced finite elements for free-surface flows in 2D, Int. J. Numer. Methods Fluids, 81, 426-450, 2016
[94] Hosters, N.; Helmig, J.; Stavrev, A.; Behr, M.; Elgeti, S., Fluid-structure interaction with NURBS-based coupling, Comput. Methods Appl. Mech. Eng., 332, 520-539, 2018 · Zbl 1440.74402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.