×

Exact periodic solution of the undamped Helmholtz oscillator subject to a constant force and arbitrary initial conditions. (English) Zbl 07869407

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
37N15 Dynamical systems in solid mechanics
33E05 Elliptic functions and integrals
Full Text: DOI

References:

[1] H.Aftab, U.Baneen, and A.Israr, Identification and severity estimation of a breathing crack in a plate via nonlinear dynamics, Nonlin. Dyn.104 (2021), no. 3, 1973-1989, DOI 10.1007/s11071‐021‐06275‐9.
[2] R.Ikram and A.Israr, Study of plate vibrating in fluids having part‐through crack at random angles and locations, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.235 (2021), no. 22, 6036-6051, DOI 10.1177/09544062211012717.
[3] M.Şimşek, Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method, Compos. Struct.112 (2014), 264-272.
[4] G.Sobamowo, Nonlinear vibration analysis of single‐walled carbon nanotube conveying fluid in slip boundary conditions using Variational iterative method, J. Appl. Comput. Mech.2 (2016), no. 4, 208-221, DOI 10.22055/jacm.2016.12527.
[5] P.Valipour, S. E.Ghasemi, M. R.Khosravani, and D. D.Ganji, Theoretical analysis on nonlinear vibration of fluid flow in single‐walled carbon nanotube, J. Theor. Appl. Phys.10 (2016), no. 3, 211-218, DOI 10.1007/s40094‐016‐0217‐9.
[6] A.Big‐Alabo, E. O.Ekpruke, C. V.Ossia, D. O.Jonah, and C. O.Ogbodo, Generalized oscillator model for nonlinear vibration analysis using quasi‐static cubication method, Int. J. Mech. Eng. Educ.49 (2021b), 359-381, DOI 10.1177/0306419019896586.
[7] A.Big‐Alabo and C. V.Ossia, Analysis of the coupled nonlinear vibration of a two‐mass system, J. Appl. Comput. Mech.5 (2019), no. 5, 935-950.
[8] S.Hashemi Kachapi, R. V.Dukkipati, S. G.Hashemi, S. M.Hashemi, S. M.Hashemi, and S. K.Hashemi, Analysis of the nonlinear vibration of a two‐mass-spring system with linear and nonlinear stiffness, Nonlinear Anal.: Real World Appl.11 (2010), no. 3, 1431-1441, DOI 10.1016/j.nonrwa.2009.03.010. · Zbl 1254.70021
[9] S.Abrate, Modeling of impacts on composite structures, Comput. Struct.51 (2001), 129-138.
[10] G. B.Chai and S.Zhu, A review of low‐velocity impact on sandwich structures, Proc. Inst. Mech. Eng. Part L: J. Mater.: Des. Appl..225 (2011), no. 4, 207-230, DOI 10.1177/1464420711409985.
[11] R. C.Batra, M.Porfiri, and D.Spinello, Vibrations of narrow microbeams predeformed by an electric field, J. Sound Vib.309 (2008), no. 3-5, 600-612, DOI 10.1016/j.jsv.2007.07.030.
[12] E.Esmailzadeh, D.Younesian, and H.Askari, Analytical Methods in Nonlinear Oscillations: Approaches and Applications, Springer, Netherlands, 2019. · Zbl 1439.34002
[13] A.Elías‐Zúñiga, O.Martínez‐Romero, D.Olvera‐Trejo, and L. M.Palacios‐Pineda, Determination of the frequency‐amplitude response curves of undamped forced Duffing’s oscillators using an ancient Chinese algorithm, Res. Phys.24 (2021), 104085, DOI 10.1016/j.rinp.2021.104085.
[14] L.Cveticanin, M.Zukovic, G.Mester, I.Biro, and J.Sarosi, Oscillators with symmetric and asymmetric quadratic nonlinearity, Acta Mechanica227 (2016), no. 6, 1727-1742, DOI 10.1007/s00707‐016‐1582‐9. · Zbl 1341.34044
[15] A. H.Salas, J. E.Castillo, and D. J.Mosquera, A new approach for solving the undamped Helmholtz oscillator for the given arbitrary initial conditions and its physical applications, Math. Probl. Eng.2020 (2020), 7876413, DOI 10.1155/2020/7876413. · Zbl 1459.65133
[16] A.Big‐Alabo and M. P.Cartmell, Vibration analysis of a trimorph plate for optimised damage mitigation, J. Theor. Appl. Mech.49 (2011), no. 3, 641-664.
[17] A.Big‐Alabo and M. P.Cartmell, Vibration analysis of a trimorph plate as a precursor model for smart automotive bodywork, J. Phys.: Conf. Ser.382 (2012), 012010, DOI 10.1088/1742‐6596/382/1/012010.
[18] A. H.Salas and S. A.El‐Tantawy, Analytical Solutions of Some Strong Nonlinear Oscillators. Engineering Problems—Uncertainties, Constraints and Optimization Techniques, IntechOpen, 2022.
[19] H.Hu, Solution of a quadratic nonlinear oscillator by the method of harmonic balance, J. Sound Vib.293 (2006a), no. 1-2, 462-468, DOI 10.1016/j.jsv.2005.10.002. · Zbl 1243.34048
[20] J. M. T.Thompson, Chaotic phenomena triggering the escape from a potential well, Proc. Royal Soc. A: Math. Phys. Eng. Sci.421 (1989), no. 1861, 195-225, DOI 10.1098/rspa.1989.0009. · Zbl 0674.70035
[21] C. W.Lim, S. K.Lai, B. S.Wu, W. P.Sun, Y.Yang, and C.Wang, Application of a modified Lindstedt-Poincaré method in coupled TDOF systems with quadratic nonlinearity and a constant external excitation, Arch. Appl. Mech.79 (2009), no. 5, 411-431, DOI 10.1007/s00419‐008‐0234‐5. · Zbl 1168.70302
[22] W.Jiang, G.Zhang, and L.Chen, Forced response of quadratic nonlinear oscillator: comparison of various approaches, Appl. Math. Mech.36 (2015), no. 11, 1403-1416, DOI 10.1007/s10483‐015‐1991‐7. · Zbl 1331.34054
[23] I. S.Kang and L. G.Leal, Bubble dynamics in time‐periodic straining flows, J. Fluid Mech.218 (1990), no. −1, 41, DOI 10.1017/s0022112090000921. · Zbl 0706.76126
[24] A. H.Salas, J. E.Castillo, and L. J.Martınez, Perihelion precessions of inner planets in Einstein’s theory and predicted values for the cosmological constant, Scientific World Journal2022 (2022), 4808065, DOI 10.1155/2022/4808065.
[25] H.Hu, Solutions of a quadratic nonlinear oscillator: iteration procedure, J. Sound Vib.298 (2006b), no. 4-5, 1159-1165, DOI 10.1016/j.jsv.2006.06.005. · Zbl 1243.70030
[26] H.Hu, Exact solution of a quadratic nonlinear oscillator, J. Sound Vib.295 (2006c), no. 1-2, 450-457, DOI 10.1016/j.jsv.2006.01.013. · Zbl 1243.34001
[27] L.Cveticanin, Vibrations of the system with quadratic non‐linearity and a constant excitation force, J. Sound Vib.261 (2003), no. 1, 169-176, DOI 10.1016/s0022‐460x(02)01178‐1. · Zbl 1237.70104
[28] L.Cveticanin, Vibrations of the nonlinear oscillator with quadratic nonlinearity, Phys. A: Stat. Mech. Appl.341 (2004), 123-135, DOI 10.1016/j.physa.2004.04.123.
[29] S. K.Lai and K. W.Chow, Exact solutions for oscillators with quadratic damping and mixed‐parity nonlinearity, Phys. Scripta85 (2012), no. 4, 045006, DOI 10.1088/0031‐8949/85/04/045006. · Zbl 1310.34046
[30] J.Zhu, A new exact solution of a damped quadratic non‐linear oscillator, App. Math. Model.38 (2014), no. 24, 5986-5993, DOI 10.1016/j.apm.2014.04.065. · Zbl 1449.34003
[31] A.Beléndez, A.Hernández, T.Beléndez, E.Arribas, and M. L.Álvarez, Closed‐form solutions for the quadratic mixed‐parity nonlinear oscillator, Ind. J. Phys.95 (2020), 1213-1224, DOI 10.1007/s12648‐020‐01796‐2.
[32] A.Beléndez, F. J.Martínez, T.Beléndez, C.Pascual, M. L.Alvarez, E.Gimeno, and E.Arribas, Exact solutions for an oscillator with anti‐symmetric quadratic nonlin earity, Ind. J. Phys.92 (2017), no. 4, 495-506, DOI 10.1007/s12648‐017‐1125‐9.
[33] I. S.Gradshteyn and I. M.Ryzhik, Table of Integrals, Series and Products, 7th ed., Academic Press, Amsterdam, 2007. · Zbl 1208.65001
[34] A.Mirzabeigy and R.Madoliat, A note on free vibration of a double‐beam system with nonlinear elastic inner layer, J. Appl. Comput. Mech.5 (2019), no. 1, 174-180, DOI 10.22055/jacm.2018.25143.1232.
[35] A.Big‐Alabo and C. V.Ossia, Free vibration of a two‐mass system with coupled cubic‐quintic nonlinear stiffness, Uniport J. Eng. Sci. Res.5 (2020), 28-40.
[36] L.Cveticanin, The motion of a two‐mass system with non‐linear connection, J. Sound Vib.252 (2002), no. 2, 361-369, DOI 10.1006/jsvi.2000.3551.
[37] L.Cveticanin, A solution procedure based on the Ateb function for a two‐degree‐of‐freedom oscillator, J. Sound Vib.346 (2015), 298-313, DOI 10.1016/j.jsv.2015.02.016.
[38] L.Cveticanin, M.KalamiYazdi, H.Askari, and Z.Saadatnia, Vibration of a two‐mass system with non‐integer order nonlinear connection, Mech. Res. Commun.43 (2012), 22-28, DOI 10.1016/j.mechrescom.2012.04.002.
[39] S. S.Ganji, A.Barari, and D. D.Ganji, Approximate analysis of two‐mass-spring systems and buckling of a column, Comput. Math. Appl.61 (2011), no. 4, 1088-1095, DOI 10.1016/j.camwa.2010.12.059. · Zbl 1217.74050
[40] A.Big‐Alabo, E. O.Ekpruke, and C. V.Ossia, Equivalent oscillator model for the nonlinear vibration of a porter governor, J. King Saud Univ. ‐ Eng. Sci.35 (2021a), 304-309, DOI 10.1016/j.jksues.2021.01.009.
[41] W.Alhejaili, A. H.Salas, and S. A.El‐Tantawy, The Krylov-Bogoliubov-Mitropolsky method for modeling a forced damped quadratic pendulum oscillator, AIP Adv.13 (2023), no. 8, 085029, DOI 10.1063/5.0159852.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.