×

A comprehensive analysis of Fokas-Lenells equation using Lie symmetry method. (English) Zbl 07869355

MSC:

76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics
35Q51 Soliton equations
78A60 Lasers, masers, optical bistability, nonlinear optics

Software:

Matlab; Maple
Full Text: DOI

References:

[1] R.Howe, Quantum mechanics and partial differential equations, J. Funct. Anal.38 (1980), no. 2, 188-254. · Zbl 0449.35002
[2] E. R.Gianin and C.Sgarra, Partial differential equations in Finance, Mathematical finance: theory review and exercises, Springer, Cham, Switzerland, 2013, pp. 101-122.
[3] K. H.Parker, An introduction to wave intensity analysis, Med. Biol. Eng. Comput.47 (2009), no. 2, 175-188.
[4] H.Li, R.Peng, and Z.Wang, On a diffusive susceptible‐infected‐susceptible epidemic model with mass action mechanism and birth‐death effect: analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math.78 (2018), no. 4, 2129-2153. https://epubs.siam.org/doi/abs/10.1137/18M1167863 · Zbl 1393.35102
[5] H.‐Y.Jin and Z.‐A.Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differ. Equ.260 (2016), no. 1, 162-196. · Zbl 1323.35001
[6] Y.Peng, Y.Zhao, and J.Hu, On the role of community structure in evolution of opinion formation: a new bounded confidence opinion dynamics, Inform. Sci.621 (2023), 672-690.
[7] Y.Shi, J.Hu, Y.Wu, and B. K.Ghosh, Intermittent output tracking control of heterogeneous multi‐agent systems over wide‐area clustered communication networks, Nonlinear Anal.: Hybrid Syst.50 (2023), 101387. · Zbl 1522.93023
[8] W.Malfliet, The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations, J. Comput. Appl. Math.164-165 (2004), 529-541. · Zbl 1038.65102
[9] Sirendaoreji, Unified Riccati equation expansion method and its application to two new classes of Benjamin-Bona-Mahony equations, Nonlinear Dyn.89 (2017), no. 1, 333-344. · Zbl 1374.37091
[10] M.Ozisik, M.Cinar, A.Secer, and M.Bayram, Optical solitons with Kudryashov’s sextic power‐law nonlinearity, Optik261 (2022), 169202.
[11] A. R.Seadawy, Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion‐acoustic waves in a plasma, Comput. Math. Appl.67 (2014), no. 1, 172-180. · Zbl 1381.82023
[12] N. A.Kudryashov and M. V.Demina, Traveling wave solutions of the generalized nonlinear evolution equations, Appl. Math. Comput.210 (2009), no. 2, 551-557. · Zbl 1170.35514
[13] M.Ozisik, A.Secer, M.Bayram, M.Cinar, N.Ozdemir, H.Esen, and I.Onder, Investigation of optical soliton solutions of higher‐order nonlinear Schrödinger equation having Kudryashov nonlinear refractive index, Optik274 (2023), 170548.
[14] N. A.Kudryashov and D. I.Sinelshchikov, Equation for the three‐dimensional nonlinear waves in liquid with gas bubbles, Phys. Scripta85 (2012), no. 2, 25402. · Zbl 1263.76073
[15] A. R.Seadawy, M.Iqbal, and D.Lu, Applications of propagation of long‐wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev-Petviashvili modified equal width dynamical equation, Comput. Math. Appl.78 (2019), no. 11, 3620-3632. · Zbl 1443.35141
[16] N. A.Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equations, Optik206 (2020), 163550.
[17] S.Malik, M. S.Hashemi, S.Kumar, H.Rezazadeh, W.Mahmoud, and M. S.Osman, Application of new Kudryashov method to various nonlinear partial differential equations, Opt. Quantum Electron.55 (2023), no. 1, 8.
[18] J.Wang, K.Shehzad, A. R.Seadawy, M.Arshad, and F.Asmat, Dynamic study of multi‐peak solitons and other wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems with their stability, J. Taibah Univer. Sci.17 (2023), no. 1, 2163872. https://www.tandfonline.com/doi/full/10.1080/16583655.2022.2163872
[19] S. T. R.Rizvi, A. R.Seadawy, S.Ahmed, M.Younis, and K.Ali, Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation, Chaos Solitons Fractals151 (2021), 111251. · Zbl 1498.35591
[20] F.‐L.Xia, F.Jarad, M. S.Hashemi, and M. B.Riaz, A reduction technique to solve the generalized nonlinear dispersive mK(m,n) equation with new local derivative, Results Phys.38 (2022), 105512.
[21] A.Akbulut, M.Mirzazadeh, M. S.Hashemi, K.Hosseini, S.Salahshour, and C.Park, Triki-Biswas model: its symmetry reduction, Nucci’s reduction and conservation laws, Int. J. Modern Phys. B37 (2023), no. 07, 2350063.
[22] Y.‐J.Xu and M. S.Hashemi, Exact solutions for porous fins under a uniform magnetic field: a novel reduction method, Case Stud. Thermal Eng.45 (2023), 103013.
[23] U.Younas, A. R.Seadawy, M.Younis, and S. T. R.Rizvi, Optical solitons and closed form solutions to the (3+1)‐dimensional resonant Schrödinger dynamical wave equation, Int. J. Modern Phys. B34 (2020), no. 30, 2050291. · Zbl 1454.35357
[24] N.Çelik, A. R.Seadawy, Y.Salamözkan, and E.Yaşar, A model of solitary waves in a nonlinear elastic circular rod: abundant different type exact solutions and conservation laws, Chaos Solitons Fractals143 (2021), 110486. · Zbl 1498.35528
[25] A. S.Fokas, On a class of physically important integrable equations, Phys. D: Nonlinear Phenom.87 (1995), no. 1, 145-150. · Zbl 1194.35363
[26] J.Lenells, Exactly solvable model for nonlinear pulse propagation in optical fibers, Stud. Appl. Math.123 (2009), no. 2, 215-232. · Zbl 1171.35473
[27] A.Muniyappan, L. N.Sahasraari, S.Anitha, S.Ilakiya, A.Biswas, Y.Yldrm, H.Triki, H. M.Alshehri, and M. R.Belic, Family of optical solitons for perturbed Fokas-Lenells equation, Optik249 (2022), 168224.
[28] P.Verma, V.Kumar, M.Kumar, and Poonam, Perturbed Fokas-Lenells equation: Lie symmetry analysis, complexitons and baseband modulation instability, Int. J. Modern Phys. B37 (2022), no. 02, 2350015.
[29] V.Kumar, Optical solitons and modulation instability for Cubic-quartic Fokas-Lenells equation, Partial Differ. Equ. Appl. Math.5 (2022), 100328.
[30] L.Zhang, G.Wang, Q.Zhao, and L.Wang, Lie symmetries and conservation laws of Fokas-Lenells equation and two coupled Fokas-Lenells equations by the symmetry/adjoint symmetry pair method, Symmetry14 (2022), no. 2, 238.
[31] A.Bansal, A. H.Kara, A.Biswas, S. P.Moshokoa, and M.Belic, Optical soliton perturbation, group invariants and conservation laws of perturbed Fokas-Lenells equation, Chaos Solitons Fractals114 (2018), 275-280. · Zbl 1415.35009
[32] M.Cinar, A.Secer, M.Ozisik, and M.Bayram, Derivation of optical solitons of dimensionless Fokas‐Lenells equation with perturbation term using Sardar sub‐equation method, Opt. Quantum Electron.54 (2022), no. 7, 1-13.
[33] H.Stephani and M.MacCallum, Differential equations: their solution using symmetries, Cambridge University Press, New York, 1989. https://books.google.com.tr/books?id=nFSJn7dIYysC · Zbl 0704.34001
[34] M. S.Hashemi and M.Mirzazadeh, Optical solitons of the perturbed nonlinear Schrödinger equation using Lie symmetry method, Optik281 (2023), 170816.
[35] C.Masood Khalique and A.Biswas, A Lie symmetry approach to nonlinear Schrödinger’s equation with non‐Kerr law nonlinearity, Commun. Nonlinear Sci. Numer. Simul.14 (2009), no. 12, 4033-4040. · Zbl 1221.35396
[36] R.Gilmore, Lie groups, Lie algebras, and some of their applications, Dover Books on Mathematics, Dover Publications, New York, 2012. https://books.google.com.tr/books?id=ePMX38H4DD4C
[37] F.Iachello, Lie algebras and applications, Lecture Notes in Physics, Springer, Berlin, Heidelberg, 2007. https://books.google.com.tr/books?id=6lBqCQAAQBAJ
[38] I.Onder, A.Secer, M. S.Hashemi, M.Ozisik, and M.Bayram, On solution of Schrödinger-Hirota equation with Kerr law via Lie symmetry reduction, Nonlinear Dyn.111 (2023), no. 20, 19315-19327.
[39] D. H.Sattinger and O. L.Weaver, Lie groups and algebras with applications to physics, geometry, and mechanics, Applied Mathematical Sciences, Springer, New York, 2013. https://books.google.com.tr/books?id=RVzhBwAAQBAJ
[40] F. I.Sloane, Lie algebras and applications, Lecture Notes in Physics, Springer, Berlin, Heidelberg, 2014. https://books.google.com.tr/books?id=xgv5sgEACAAJ
[41] Maplesoft, Maple 2023, Waterloo Maple Inc., Waterloo, Ontario, 2023. https://www.maplesoft.com
[42] MATLAB, Version 23.2.0.2365128 (R2023b), The MathWorks Inc., Natick, Massachusetts, 2023.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.