×

Quantum resonant optical bistability with a narrow atomic transition: bistability phase diagram in the bad cavity regime. (English) Zbl 07869230

Summary: We report on the observation of a novel manifestation of saturation-induced optical bistability in a resonantly pumped optical ring cavity interacting strongly with a cloud of atoms via a narrow atomic transition. The bistability emerges, above a critical pump rate, as an additional peak in the cavity’s normal mode spectrum close to atomic resonance. This third transmission peak is usually suppressed due to strong resonant absorption, but in our experiment it is visible because of the linewidth of the atomic transition being much smaller than that of the cavity, which sets the experiment into the bad-cavity regime. Relying on complete saturation of the transition, this bistability has a quantum origin and cannot be mimicked by a classical material presenting a nonlinear refraction index. The appearance of the central peak in addition to the normal modes is predicted by a semi-classical model derived from the Tavis-Cummings Hamiltonian from which we derive a bistability phase diagram that connects our observations with former work on optical bistability in the good cavity regime. The phase diagram reveals several so far unexplored bistable phases.
{© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft}

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
83-XX Relativity and gravitational theory

References:

[1] Kitagawa, M.; Ueda, M., Squeezed spin states, Phys. Rev. A, 47, 5138 (1993) · doi:10.1103/PhysRevA.47.5138
[2] Leroux, I. D.; Schleier-Smith, M. H.; Vuletic, V., Implementation of cavity squeezing of a collective atomic spin, Phys. Rev. Lett., 104 (2010) · doi:10.1103/PhysRevLett.104.073602
[3] Schleier-Smith, M. H.; Leroux, I. D.; Vuletic, V., Squeezing the collective spin of a dilute atomic ensemble by cavity feedback, Phys. Rev. A, 81 (2010) · doi:10.1103/PhysRevA.81.021804
[4] Schleier-Smith, M. H.; Leroux, I. D.; Vuletic, V., States of an ensemble of two-level atoms with reduced quantum uncertainty, Phys. Rev. Lett., 104 (2010) · doi:10.1103/PhysRevLett.104.073604
[5] Chen, Z.; Bohnet, J. G.; Sankar, S. R.; Dai, J.; Thompson, J. K., Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting, Phys. Rev. Lett., 106 (2011) · doi:10.1103/PhysRevLett.106.133601
[6] Bohnet, J. G.; Cox, K. C.; Norcia, M. A.; Weiner, J. M.; Chen, Z.; Thompson, J. K., Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit, Nat. Photon., 8, 731 (2014) · doi:10.1038/nphoton.2014.151
[7] Cox, K. C.; Greve, G. P.; Weiner, J. M.; Thompson, J. K., Deterministic squeezed states with collective measurements and feedback, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.093602
[8] Xu, M.; Jäger, S. B.; Schütz, S.; Cooper, J.; Morigi, G.; Holland, M. J., Supercooling of atoms in an optical resonator, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.153002
[9] Salvi, L.; Poli, N.; Vuletić, V.; Tino, G. M., Squeezing on momentum states for atom interferometry, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.033601
[10] Meiser, D.; Ye, J.; Carlson, D. R.; Holland, M. J., Prospects for a milliHertz-linewidth laser, Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.163601
[11] Maier, T.; Kraemer, S.; Ostermann, L.; Ritsch, H., A superradiant clock laser on a magic wavelength optical lattice, Opt. Exp., 22 (2014) · doi:10.1364/OE.22.013269
[12] Norcia, M. A.; Winchester, M. N.; Cline, J. R K.; Thompson, J. K., Superradiance on the milliHertz linewidth strontium clock transition, Sci. Adv., 2 (2016) · doi:10.1126/sciadv.1601231
[13] Norcia, M. A.; Thompson, J. K., Cold-strontium laser in the superradiant crossover regime, Phys. Rev. X, 6 (2016) · doi:10.1103/PhysRevX.6.011025
[14] Norcia, M. A.; Lewis-Swan, R. J.; Cline, J. R K.; Zhu, B.; Rey, A. M.; Thompson, J. K., Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser, Science, 361, 259 (2018) · doi:10.1126/science.aar3102
[15] Davis, E. J.; Bentsen, G.; Homeier, L.; Li, T.; Schleier-Smith, M. H., Photon-mediated spin-exchange dynamics of spin-1 atoms, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.010405
[16] Bychek, A.; Hotter, C.; Plankensteiner, D.; Ritsch, H., Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling (2021)
[17] Orioli, A. P.; Thompson, J. K.; Rey, A. M., Emergent dark states from superradiant dynamics in multilevel atoms in a cavity, Phys. Rev. X, 12 (2022) · doi:10.1103/PhysRevX.12.011054
[18] Hosten, O.; Krishnakumarn, R.; Engelsen, N. J.; Kasevich, M. A., Quantum phase magnification, Science, 352, 1552 (2016) · Zbl 1355.81161 · doi:10.1126/science.aaf3397
[19] Cline, J. R K.; Schafer, V. M.; Niu, Z.; Young, D. J.; Hyun Yoon, T.; Thompson, J. K., Continuous collective strong coupling between atoms and a high finesse optical cavity (2022)
[20] Lambrecht, A.; Coudreau, T.; Steinberg, A. M.; Giacobino, E., Squeezing with cold atoms, Europhys. Lett., 36, 93 (1996) · doi:10.1209/epl/i1996-00192-1
[21] Turchette, Q. A.; Georgiades, N. P.; Hood, C. J.; Kimble, H. J.; Parkins, A. S., Squeezed excitation in cavity QED: experiment and theory, Phys. Rev. A, 58, 4056 (1998) · doi:10.1103/PhysRevA.58.4056
[22] Schnabel, R.; Mavalvala, N.; McClelland, D. E.; Lam, P. K., Quantum metrology for gravitational wave astronomy, Nat. Commun., 1, 121 (2016) · doi:10.1038/ncomms1122
[23] Louchet-Chauvet, A.; Appel, J.; Renema, J.; Oblak, D.; Kjaergaard, N.; Polzik, E. S., Entanglement-assisted atomic clock beyond the projection noise limit, New J. Phys., 12 (2009) · doi:10.1088/1367-2630/12/6/065032
[24] Dantan, A.; Cviklinski, J.; Giacobino, E.; Pinard, M., Spin squeezing and light entanglement in coherent population trapping, Phys. Rev. Lett., 97 (2006) · doi:10.1103/PhysRevLett.97.023605
[25] Gibbs, H. M.; McCall, S. L.; Venkatesan, T. N C., Differential gain and bistability using a sodium-filled Fabry-Pérot interferometer, Phys. Rev. Lett., 36, 1135 (1976) · doi:10.1103/PhysRevLett.36.1135
[26] Gripp, J.; Mielke, S. L.; Orozco, L. A., Evolution of the vacuum Rabi peaks in a detuned atom-cavity system, Phys. Rev. A, 56, 3262 (1997) · doi:10.1103/PhysRevA.56.3262
[27] Gripp, J.; Orozco, L. A., Evolution of the vacuum Rabi peaks in a many-atom system, Quantum Semiclass. Opt., 8, 823 (1997) · doi:10.1088/1355-5111/8/4/005
[28] Gothe, H.; Valenzuela, T.; Cristiani, M.; Eschner, J., Optical bistability and nonlinear dynamics by saturation of cold Yb atoms in a cavity, Phys. Rev. A, 99 (2019) · doi:10.1103/PhysRevA.99.013849
[29] Martin, M. J.; Meiser, D.; Thomsen, J. W.; Ye, J.; Holland, M. J., Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization, Phys. Rev. A, 94 (2011) · doi:10.1103/PhysRevA.84.063813
[30] Gupta, S.; Moore, K. L.; Murch, K. W.; Stamper-Kurn, D. M., Cavity nonlinear optics at low photon numbers from collective atomic motion, Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.213601
[31] Ritter, S.; Brennecke, F.; Baumann, K.; Donner, T.; Guerlin, C.; Esslinger, T., Dynamical coupling between a Bose-Einstein condensate and a cavity optical lattice, Appl. Phys. B, 95, 213 (2009) · doi:10.1007/s00340-009-3436-9
[32] Lambrecht, A.; Courty, J.; Giacobino, E., Optical nonlinear dynamics with cold atoms in a cavity, Opt. Commun., 115, 199 (1995) · doi:10.1016/0030-4018(94)00493-E
[33] Gabor, B.; Nagy, D.; Dombi, A.; Clark, T. W.; Williams, F. I B.; Adwaith, K. V.; Vukics, A.; Domokos, P., Ground state bistability of cold atoms in a cavity, Phys. Rev. A, 107 (2022) · doi:10.1103/PhysRevA.107.023713
[34] Suarez, E.; Carollo, F.; Lesanovsky, I.; Olmos-Sanchez, B.; Courteille, P. W.; Slama, S., Collective atom-cavity coupling and nonlinear dynamics with atoms with multilevel ground states, Phys. Rev. A, 107 (2023) · doi:10.1103/PhysRevA.107.023714
[35] Zhu, Y.; Gauthier, D. J.; Morin, S. E.; Wu, Q.; Carmichael, H. J.; Mossberg, T. W., Vacuum Rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations, J. Opt. Soc. Am. B, 64, 2499 (1990)
[36] Schuster, I.; Kubanek, A.; Fuhrmanek, A.; Puppe, T.; Pinske, P. W H.; Murr, K.; Rempe, G., Nonlinear spectroscopy of photons bound to one atom, Nat. Phys. Lett., 4, 382 (2001) · doi:10.1038/nphys940
[37] Mücke, M.; Figueroa, E.; Bochmann, J.; Hahn, C.; Murr, K.; Ritter, S.; Villas-Boas, C. J.; Rempe, G., Electromagnetically induced transparency with single atoms in a cavity, Nature, 465, 755 (2010) · doi:10.1038/nature09093
[38] Arnold, K. J.; Baden, M. P.; Barrett, M. D., Collective cavity quantum electrodynamics with multiple atomic levels, Phys. Rev. A, 84 (2011) · doi:10.1103/PhysRevA.84.033843
[39] Ritsch, H.; Domokos, P.; Brennecke, F.; Esslinger, T., Cold atoms in cavity-generated dynamical optical potentials, Rev. Mod. Phys., 85, 553 (2013) · doi:10.1103/RevModPhys.85.553
[40] Rivero, D.; Beli Silva, C.; Moreno Armijo, M. A.; Keßler, H.; da Silva, H. F.; Comito, G.; Shiozaki, R. F.; Teixeira, R. C.; Courteille, P. W., Progress towards a continuously operating matter wave interferometer for inertial sensing, Appl. Phys. B, 128, 44 (2021) · doi:10.1007/s00340-022-07772-4
[41] Note that the decrease of the normal mode splitting at high intensities seen in various figures [e.g. black lines in figures (c) and (b)] is a consequence of the nonlinearity of the system even in regimes where no bistability is observed
[42] Narducci, L. M.; Orzag, M.; Tuft, R. A., Energy spectrum of the Dicke Hamiltonian, Phys. Rev. A, 8, 1892 (1973) · doi:10.1103/PhysRevA.8.1892
[43] Garraway, B. M., The Dicke model in quantum optics: Dicke model revisited, Phil. Trans. R. Soc. A, 369, 1137 (2011) · Zbl 1219.81283 · doi:10.1098/rsta.2010.0333
[44] Note that all features observed with a ring cavity in this work also apply to linear cavities
[45] Landau, L. D.; Lifschitz, E. M.; Landau, L. D.; Lifschitz, E. M., Small oscillations, Mechanics, pp 58-95 (1976), Butterworth-Heinemann
[46] Winchester, M. N.; Norcia, M. A.; Cline, J. R K.; Thompson, J. K., Magnetically induced optical transparency on a forbidden transition in strontium for cavity-enhanced spectroscopy, Phys. Rev. Lett., 118 (2017) · doi:10.1103/PhysRevLett.118.263601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.