×

On perfect powers that are sums of cubes of a nine term arithmetic progression. (English) Zbl 07869080

Summary: We study the equation \(( x - 4 r )^3 + ( x - 3 r )^3 + ( x - 2 r )^3 + ( x - r )^3 + x^3 + ( x + r )^3 + ( x + 2 r )^3 + ( x + 3 r )^3 + ( x + 4 r )^3 = y^p\), which is a natural continuation of previous works carried out by A. Argáez-García and the fourth author (perfect powers that are sums of cubes of a three, five and seven term arithmetic progression). Under the assumptions \(0 < r \leq 1 0^6\), \(p \geq 5\) a prime and \(\gcd ( x , r ) = 1\), we show that solutions must satisfy \(x y = 0\). Moreover, we study the equation for prime exponents 2 and 3 in greater detail. Under the assumptions \(r > 0\) a positive integer and \(\gcd ( x , r ) = 1\) we show that there are infinitely many solutions for \(p = 2\) and \(p = 3\) via explicit constructions using integral points on elliptic curves. We use an amalgamation of methods in computational and algebraic number theory to overcome the increased computational challenge. Most notable is a significant computational efficiency obtained through appealing to Bilu, Hanrot and Voutier’s Primitive Divisor Theorem and the method of Chabauty, as well as employing a Thue equation solver earlier on.

MSC:

11D61 Exponential Diophantine equations
11D41 Higher degree equations; Fermat’s equation
11D25 Cubic and quartic Diophantine equations
14G05 Rational points

Software:

Magma

References:

[1] Argáez-García, A., On perfect powers that are sums of cubes of a five term arithmetic progression, J. Number Theory, 201, 460-472, 2019 · Zbl 1459.11089
[2] Argáez-García, A.; Patel, V., On perfect powers that are sums of cubes of a three term arithmetic progression, J. Comb. Number Theory, 10, 3, 147-160, 2019 · Zbl 1459.11091
[3] Argáez-García, A.; Patel, V., On perfect powers that are sums of cubes of a seven term arithmetic progression, J. Number Theory, 214, 440-451, 2020 · Zbl 1459.11090
[4] Bartoli, D.; Soydan, G., The Diophantine equation \(( x + 1 )^k + ( x + 2 )^k + \cdots + ( \ell x )^k = y^n\) revisited, Publ. Math. Debrecen, 96, 1-2, 111-120, 2020 · Zbl 1449.11063
[5] Bennett, M. A.; Győry, K.; Mignotte, M.; Pintér, Á., Binomial Thue equations and polynomial powers, Compos. Math., 142, 5, 1103-1121, 2006 · Zbl 1126.11018
[6] Bennett, M. A.; Koutsianas, A., The equation \(( x - d )^5 + x^5 + ( x + d )^5 = y^n\), Acta Arith., 198, 4, 387-399, 2021 · Zbl 1475.11049
[7] Bennett, M. A.; Patel, V.; Siksek, S., Superelliptic equations arising from sums of consecutive powers, Acta Arith., 172, 4, 377-393, 2016 · Zbl 1401.11076
[8] Bennett, M. A.; Patel, V.; Siksek, S., Perfect powers that are sums of consecutive cubes, Mathematika, 63, 1, 230-249, 2017 · Zbl 1437.11046
[9] Bennett, M. A.; Vatsal, V.; Yazdani, S., Ternary Diophantine equations of signature \(( p , p , 3 )\), Compos. Math., 140, 6, 1399-1416, 2004 · Zbl 1096.11013
[10] Bérczes, A.; Pink, I.; Savaş, G.; Soydan, G., On the Diophantine equation \(( x + 1 )^k + ( x + 2 )^k + \cdots + ( 2 x )^k = y^n\), J. Number Theory, 183, 326-351, 2018 · Zbl 1433.11034
[11] Bilu, Y.; Hanrot, G., Solving Thue equations of high degree, J. Number Theory, 60, 2, 373-392, 1996 · Zbl 0867.11017
[12] Bilu, Y.; Hanrot, G.; Voutier, P. M., Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math., 539, 75-122, 2001 · Zbl 0995.11010
[13] Bosma, W.; Cannon, J.; Playoust, C., The magma algebra system. I. The user language, J. Symbolic Comput., 24, 3-4, 235-265, 1997, Computational algebra and number theory (London, 1993) · Zbl 0898.68039
[14] Bremner, A.; Stroeker, R. J.; Tzanakis, N., On sums of consecutive squares, J. Number Theory, 62, 1, 39-70, 1997 · Zbl 0876.11024
[15] Cassels, J. W.S., A Diophantine equation, Glasgow Math. J., 27, 11-18, 1985 · Zbl 0576.10010
[16] Cohen, H., Number theory: Volume II: Analytic and modern tools, (Grad. Texts Math, vol. 240, 2007, Springer: Springer New York) · Zbl 1119.11002
[17] Cohn, J. H.E., Perfect pell powers, Glasgow Math. J., 38, 1, 19-20, 1996 · Zbl 0852.11014
[18] Coppola, N.; Curcó-Iranzo, M.; Khawaja, M.; Patel, V.; Ülkem, Ö., On perfect powers that are sums of cubes of a nine term arithmetic progression, 2023, arXiv: 2307.01815
[19] Del Centina, A., Unpublished manuscripts of Sophie Germain and a revaluation of her work on Fermat’s Last Theorem, Arch. Hist. Exact Sci., 62, 4, 349-392, 2008 · Zbl 1202.01060
[20] Edis, S., On Arithmetic Progressions and Perfect Powers, 2019, University of Sheffield, (Ph.D. thesis)
[21] Faltings, G., Diophantine approximation on Abelian varieties, Ann. of Math. (2), 133, 3, 549-576, 1991 · Zbl 0734.14007
[22] Koutsianas, A.; Patel, V., Perfect powers that are sums of squares in a three term arithmetic progression, Int. J. Number Theory, 14, 10, 2729-2735, 2018 · Zbl 1441.11065
[23] Kundu, D.; Patel, V., Perfect powers that are sums of squares of an arithmetic progression, Rocky Mountain J. Math., 51, 3, 933-949, 2021 · Zbl 1505.11061
[24] Mazur, B., Modular curves and the Eisenstein ideal (with an appendix by B. Mazur and M. Rapoport), Publ. Math. Inst. Hautes Études Sci., 47, 33-186, 1977 · Zbl 0394.14008
[25] Mazur, B., Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math., 44, 2, 129-162, 1978 · Zbl 0386.14009
[26] McCallum, W.; Poonen, B., The method of Chabauty and Coleman, Explicit Methods Number Theory, 36, 99-117, 2012 · Zbl 1377.11077
[27] Mignotte, M., A note on the equation \(a x^n - b y^n = c\), Acta Arith., 75, 3, 287-295, 1996 · Zbl 0861.11025
[28] Müller, J. S., Rational points on curves, (Lecture notes Summer School Computational Methods in Number Theory, 2019), Online Lecture Notes
[29] Patel, V., Perfect Powers That are Sums of Consecutive Like Powers, 2017, University of Warwick, (Ph.D. thesis) · Zbl 1358.11052
[30] Patel, V., A Lucas-Lehmer approach to generalised Lebesgue-Ramanujan-Nagell equations, Ramanujan J., 56, 2, 585-596, 2021 · Zbl 1484.11102
[31] Pintér, Á., On the power values of power sums, J. Number Theory, 125, 2, 412-423, 2007 · Zbl 1127.11022
[32] Siegel, C. L., Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl., 1, 41-69, 1929 · JFM 56.0180.05
[33] Siksek, S., Chabauty and the mordell-weil sieve, (Advances on Superelliptic Curves and their Applications. Advances on Superelliptic Curves and their Applications, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., vol. 41, 2015, IOS, Amsterdam), 194-224 · Zbl 1358.11072
[34] Silverman, J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, xii+400, 1986, Springer-Verlag: Springer-Verlag New York · Zbl 0585.14026
[35] Soydan, G., On the Diophantine equation \(( x + 1 )^k + ( x + 2 )^k + \cdots + ( l x )^k = y^n\), Publ. Math. Debrecen, 91, 3-4, 369-382, 2017 · Zbl 1413.11074
[36] Stoll, M., Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith., 98, 3, 245-277, 2001 · Zbl 0972.11058
[37] Stroeker, R. J., On the sum of consecutive cubes being a perfect square, Compos. Math., 97, 1-2, 295-307, 1995 · Zbl 0837.11012
[38] Tho, N. X., A note on the Diophantine equation \(( x + 1 )^3 + ( x + 2 )^3 + \cdots + ( 2 x )^3 = y^n\), Elem. Math., 77, 3, 142-143, 2022 · Zbl 1510.11090
[39] Tzanakis, N.; de Weger, B. M.M., On the practical solution of the Thue equation, J. Number Theory, 31, 2, 99-132, 1989 · Zbl 0657.10014
[40] Uchiyama, S., On a Diophantine equation, Proc. Japan Acad. Ser. A Math. Sci., 55, 9, 367-369, 1979 · Zbl 0455.10008
[41] van Langen, J. M., On the sum of fourth powers in arithmetic progression, Int. J. Number Theory, 17, 1, 191-221, 2021 · Zbl 1475.11051
[42] Zhang, Z., On the Diophantine equation \(( x - 1 )^k + x^k + ( x + 1 )^k = y^n\), Publ. Math. Debrecen, 85, 1-2, 93-100, 2014 · Zbl 1340.11045
[43] Zhang, Z., On the Diophantine equation \(( x - d )^4 + x^4 + ( x + d )^4 = y^n\), Int. J. Number Theory, 13, 9, 2229-2243, 2017 · Zbl 1392.11018
[44] Zhang, Z., On the Diophantine equations \(( x - 1 )^3 + x^5 + ( x + 1 )^3 = y^n\) and \(( x - 1 )^5 + x^3 + ( x + 1 )^5 = y^n\), Publ. Math. Debrecen, 91, 383-390, 2017 · Zbl 1413.11070
[45] Zhang, Z.; Bai, M., On the Diophantine equation \(( x + 1 )^2 + ( x + 2 )^2 + \cdots + ( x + d )^2 = y^n\), Funct. Approx. Comment. Math., 49, 1, 73-77, 2013 · Zbl 1335.11023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.