×

A modified least squares-based tomography with density matrix perturbation and linear entropy consideration along with performance analysis. (English) Zbl 07868985

Summary: Quantum state tomography identifies target quantum states by performing repetitive measurements on identical copies. In this paper, we have two key contributions aimed at improving traditional post-processing computational complexity and sample complexity of quantum tomography protocols. In the first case, we propose a new low-cost positivity constraint method based on density matrix perturbation after the least squares (LS) estimation of the density matrix. In the second case, we propose a new cost function with the maximum linear entropy and LS method to improve the sample average trace distance with reasonably low sample complexity. We call it the LS with the maximum entropy (LSME) method. Our proposed algorithm does not follow the iterative optimization technique, which is true for existing maximum likelihood and entropy-based ones. Performance analysis is conducted for our proposed methods by studying how they compare to the existing techniques for different sample complexities and dimensionalities. Extensive numerical simulations have been conducted to demonstrate the advantages of the proposed tomography algorithms.
{© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft}

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
83-XX Relativity and gravitational theory

Software:

qMLE

References:

[1] D’Ariano, G. M.; Paris, M. G.; Sacchi, M. F., Quantum tomography, Advances in Imaging and Electron Physics, vol 128, pp 206-309 (2003), Academic
[2] Banaszek, K.; D’ariano, G.; Paris, M.; Sacchi, M., Maximum-likelihood estimation of the density matrix, Phys. Rev. A, 61 (1999) · doi:10.1103/PhysRevA.61.010304
[3] Qi, B.; Hou, Z.; Li, L.; Dong, D.; Xiang, G.; Guo, G., Quantum state tomography via linear regression estimation, Sci. Rep., 3, 3496 (2013) · doi:10.1038/srep03496
[4] Pereira, L.; Zambrano, L.; Cortés-Vega, J.; Niklitschek, S.; Delgado, A., Adaptive quantum tomography in high dimensions, Phys. Rev. A, 98 (2018) · doi:10.1103/PhysRevA.98.012339
[5] Quek, Y.; Fort, S.; Ng, H. K., Adaptive quantum state tomography with neural networks, npj Quantum Inf., 7, 1 (2021) · doi:10.1038/s41534-021-00436-9
[6] Granade, C.; Ferrie, C.; Flammia, S. T., Practical adaptive quantum tomography, New J. Phys., 19 (2017) · Zbl 1516.81026 · doi:10.1088/1367-2630/aa8fe6
[7] Ahmad, S. T.; Farooq, A.; Shin, H., Self-guided quantum state tomography for limited resources, Sci. Rep., 12, 1 (2022) · doi:10.1038/s41598-022-09143-7
[8] Acharya, A.; Kypraios, T.; Guţă, M., A comparative study of estimation methods in quantum tomography, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.81040 · doi:10.1088/1751-8121/ab1958
[9] Faist, P.; Renner, R., Practical and reliable error bars in quantum tomography, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.010404
[10] Shang, J.; Zhang, Z.; Ng, H. K., Superfast maximum-likelihood reconstruction for quantum tomography, Phys. Rev. A, 95 (2017) · doi:10.1103/PhysRevA.95.062336
[11] Kim, J. L.; Kollias, G.; Kalev, A.; Wei, K. X.; Kyrillidis, A., Fast quantum state reconstruction via accelerated non-convex programming (2021)
[12] Rambach, M.; Qaryan, M.; Kewming, M.; Ferrie, C.; White, A. G.; Romero, J., Robust and efficient high-dimensional quantum state tomography, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.100402
[13] Blume-Kohout, R., Robust error bars for quantum tomography (2012)
[14] Blume-Kohout, R., Optimal, reliable estimation of quantum states, New J. Phys., 12 (2010) · Zbl 1375.81065 · doi:10.1088/1367-2630/12/4/043034
[15] Schwemmer, C.; Knips, L.; Richart, D.; Weinfurter, H.; Moroder, T.; Kleinmann, M.; Gühne, O., Systematic errors in current quantum state tomography tools, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.080403
[16] Flammia, S. T.; Gross, D.; Liu, Y-K; Eisert, J., Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators, New J. Phys., 14 (2012) · Zbl 1448.81075 · doi:10.1088/1367-2630/14/9/095022
[17] Kimmel, S.; da Silva, M. P.; Ryan, C. A.; Johnson, B. R.; Ohki, T., Robust extraction of tomographic information via randomized benchmarking, Phys. Rev. X, 4 (2014) · doi:10.1103/PhysRevX.4.011050
[18] Cha, P.; Ginsparg, P.; Wu, F.; Carrasquilla, J.; McMahon, P. L.; Kim, E-A, Attention-based quantum tomography, Mach. Learn.: Sci. Technol., 3, 01LT01 (2021) · doi:10.1088/2632-2153/ac362b
[19] Tiunov, E. S.; Tiunova, V.; Ulanov, A. E.; Lvovsky, A.; Fedorov, A. K., Experimental quantum homodyne tomography via machine learning, Optica, 7, 448 (2020) · doi:10.1364/OPTICA.389482
[20] Smolin, J. A.; Gambetta, J. M.; Smith, G., Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.070502
[21] Gonçalves, D.; Lavor, C.; Gomes-Ruggiero, M.; Cesário, A.; Vianna, R.; Maciel, T., Quantum state tomography with incomplete data: maximum entropy and variational quantum tomography, Phys. Rev. A, 87 (2013) · doi:10.1103/PhysRevA.87.052140
[22] Teo, Y. S.; Řeháček, J.; Hradil, Z., Informationally incomplete quantum tomography, Quantum Meas. Quantum Metrol., 1, 57 (2013) · doi:10.2478/qmetro-2013-0006
[23] Griffiths, D. J.; Schroeter, D. F., Introduction to Quantum Mechanics (2018), Cambridge University Press · Zbl 1402.81003
[24] Yuen, H., An improved sample complexity lower bound for (fidelity) quantum state tomography, Quantum, 7, 890 (2023) · doi:10.22331/q-2023-01-03-890
[25] Teo, Y. S.; Zhu, H.; Englert, B-G; Řeháček, J.; Hradil, Z., Quantum-state reconstruction by maximizing likelihood and entropy, Phys. Rev. Lett., 107 (2011) · doi:10.1103/PhysRevLett.107.020404
[26] Byrd, M. S.; Khaneja, N., Characterization of the positivity of the density matrix in terms of the coherence vector representation, Phys. Rev. A, 68 (2003) · doi:10.1103/PhysRevA.68.062322
[27] Brüning, E.; Mäkelä, H.; Messina, A.; Petruccione, F., Parametrizations of density matrices, J. Mod. Opt., 59, 1-20 (2012) · Zbl 1356.81244 · doi:10.1080/09500340.2011.632097
[28] Horn, R. A.; Johnson, C. R., Matrix Analysis (2012), Cambridge University Press
[29] Petz, D.; Rédei, M.; Stöltzner, M., Entropy, von neumann and the von neumann entropy, John von Neumann and the Foundations of Quantum Physics, pp 83-96 (2001), Springer
[30] Cover, T. M.; Thomas, J. A., Elements of Information Theory (2013), Wiley
[31] Boyd, S.; Vandenberghe, L., Convex Optimization (2004), Cambridge University Press · Zbl 1058.90049
[32] Golub, G. H.; Van Loan, C. F., Matrix Computations, vol 3 (2012), JHU Press
[33] Papoulis, A.; Unnikrishna Pillai, S., Probability, Random Variables and Stochastic Processes (2002), McGraw Hill
[34] Rosenblatt, M., Remarks on some nonparametric estimates of a density function, Ann. Math. Stat., 27, 832 (1956) · Zbl 0073.14602 · doi:10.1214/aoms/1177728190
[35] Parzen, E., On estimation of a probability density function and mode, Ann. Math. Stat., 33, 1065 (1962) · Zbl 0116.11302 · doi:10.1214/aoms/1177704472
[36] Potters, M.; Bouchaud, J-P, Wigner ensemble and semi-circle law, A First Course in Random Matrix Theory: For Physicists, Engineers and Data Scientists, p 17 (2020), Cambridge University Press
[37] Bauman, SThe tracy-widom distribution and its application to statistical physics(available at: https://web.mit.edu/8.334/www/grades/projects/projects17/SamBauman.pdf)
[38] Nadal, C.; Majumdar, S. N., A simple derivation of the tracy-widom distribution of the maximal eigenvalue of a Gaussian unitary random matrix, J. Stat. Mech. (2011) · Zbl 1456.60025 · doi:10.1088/1742-5468/2011/04/P04001
[39] Rana, S.; Parashar, P.; Lewenstein, M., Trace-distance measure of coherence, Phys. Rev. A, 93 (2016) · doi:10.1103/PhysRevA.93.012110
[40] Renes, J. M.; Blume-Kohout, R.; Scott, A. J.; Caves, C. M., Symmetric informationally complete quantum measurements, J. Math. Phys., 45, 2171 (2004) · Zbl 1071.81015 · doi:10.1063/1.1737053
[41] The MathWorks Inc.2022Matlab Version: 9.13.0 (r2022b)(available at: www.mathworks.com)
[42] Hintze, J. L.; Nelson, R. D., Violin plots: a box plot-density trace synergism, Am. Stat., 52, 181 (1998) · doi:10.1080/00031305.1998.10480559
[43] Węglarczyk, S., Kernel density estimation and its application, ITM Web Conf., 23 (2018) · doi:10.1051/itmconf/20182300037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.