×

Accurate finite element modeling of multilayered flexible piezoelectric energy harvesting devices with strong coupling of structure, piezoelectricity, and circuit. (English) Zbl 07868827

Summary: Multilayered flexible piezoelectric energy harvesting devices (FPEDs) are a new future harvesting technology which are highly flexible and lightweight than familiar cantilever piezoelectric energy harvesters. This mechanical vibration driven FPED is a strongly coupled multiphysics phenomena that involve complex natural three-way interaction among the composite piezoelectric structure, the electric charge accumulated in the piezoelectric material, and a controlling electrical circuit attached to it. Efficient and accurate computational solution approaches are essential for analyzing these mechanical vibration-driven FPEDs to capture the main physical aspect of the coupled phenomena and to accurately predict the output voltage. While there are some numerical models for simple familiar cantilever type piezoelectric energy harvester reported in the literature, a fully three-dimensional strongly coupled model for complex material distributed, complex geometry, and multilayered FPED involving strong coupling of structure, piezoelectricity, and circuit phenomena has not yet been developed. A partitioned iterative algorithm is developed using a hierarchical decomposition approach wherein the coupled three fields are solved separately and coupled through loop union integration techniques that provide an efficient and accurate simulation of FPEDs. The simulation results matched the experiment results very well. This study provides a basis for the natural extension of partitioned iterative finite element coupled algorithm to simulate the future piezoelectric energy harvesting technologies involving a strong coupling of structure, piezoelectricity, and circuit phenomenon.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Erturk, A. and Inman, D. J., “An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations,” Smart Mater. Struct., vol. 18, no. 2, pp. 025009, 2009. DOI: .
[2] Tanaka, Y., Oko, T., Mutsuda, H., Popov, A. A., Patel, R. and William, S. M., “Forced vibration experiments on flexible piezoelectric devices operating in air and water environments,” JAE, vol. 45, no. 1-4, pp. 573-580, 2014. DOI: .
[3] Bronson, J. R., Pulskamp, J. S., Polcawich, R. G., Kroninger, C. M. and Wetzel, E. D., “PZT MEMS actuated flapping wings for insect-inspired robotics,” in Proc. IEEE Inter. Conf. Microelectromechan. Syst., , 2019, pp. 1047-1050.
[4] Ishihara, D., Ohira, N., Takagi, M. and Horie, T., “Fluid-Structure Interaction design of insect-like micro flapping wing,” in Proc. VVII Inter. Conf. Comp. Methods Coupl. Probl. Sci. Engin., Europ. Comm. Comp. Methods Appl. Sci., , 2017, pp. 870-875.
[5] Balamurugan, V. and Narayanan, S., “Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control,” Finite Elements Anal. Design, vol. 37, no. 9, pp. 713-738, 2001. DOI: . · Zbl 1094.74683
[6] Nguyen, C. H. and Pietrzko, S. J., “FE analysis of a PZT-actuated adaptive beam with vibration damping and parallel R-L shunt circuit,” Finite Elements Anal. Design, vol. 42, no. 14-15, pp. 1231-1239, 2006. DOI: .
[7] Arnold, D., “Review of microscale magnetic power generation,” IEEE Trans. Magn., vol. 43, no. 11, pp. 3940-3951, 2007. DOI: .
[8] Asai, T., Araki, Y. and Ikago, K., “Energy harvesting potential tuned inertial mass electromagnetic transducer,” Mech. Syst. Signal Proc., vol. 84, pp. 659-672, 2017. DOI: .
[9] Mitcheson, P. D., Miao, P., Stark, B. H., Yeatman, E. M., Holmes, A. S. and Green, T. C., “MEMS electrostatic micro-power generation for low frequency operation,” Sensors Actuators A, vol. 115, no. 2-3, pp. 523-529, 2004. DOI: .
[10] Tanaka, Y., Oko, T., Mutsuda, H., Patel, R., William, S. M. and Popov, A. A., “An experimental study of wave power generation using a flexible piezoelectric device,” J. Ocean Wind Energy, vol. 2, pp. 28-36, 2015.
[11] Matsuda, H., Miyagi, J., Doi, Y. and Tanaka, Y., “Wind energy harvesting using flexible piezoelectric device,” J. Energy Power Engin., vol. 7, pp. 1047-1051, 2013.
[12] Mutsuda, H., Tanaka, Y., Patel, R. and Doi, Y., “Harvesting flow-induced vibration using a highly flexible piezoelectric energy device,” APPl. Ocean Res., vol. 68, pp. 39-52, 2017. DOI: .
[13] Anton, S. R. and Sodano, H. A., “A review of power harvesting using piezoelectric materials (2003-2006),” Smart Mater. Struct., vol. 16, no. 3, pp. R1-R21, 2007. DOI: .
[14] Safaei, M., Sodano, H. A. and Anton, S. R., “A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018),” Smart Mater. Struct., vol. 28, no. 11, pp. 113001, 2019. DOI: .
[15] Asan, G. A., Muthalif, N. H. and Diyana, N., “Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results,” Mech. Syst. Signal Proc., vol. 54-55, pp. 417-426, 2015. DOI: .
[16] Erturk, A. and Inman, D. J., “On mechanical modeling of cantilevered piezoelectric vibration energy harvesters,” Smart Mater. Struct., vol. 13, pp. 1131-1144, 2004.
[17] Roundy, S. and Wright, P. K., “A piezoelectric vibration based generator for wireless electronics,” J. Intellig. Mater. Syst. Struct., vol. 19, pp. 121-160, 2008.
[18] Abdelkefi, A., Najar, F., Nayfeh, A. H. and Ayed, S. B., “An energy Harvester using piezoelectric cantilever beams undergoing coupled bending torsion vibrations,” Smart Mater. Struct., vol. 20, no. 11, pp. 115007, 2011. DOI: .
[19] Ramegowda, P. C., Ishihara, D., Takata, R., Niho, T. and Horie, T., “Finite element analysis of thin piezoelectric bimorph with a metal shim using solid direct-piezoelectric and shell-inverse piezoelectric coupling with pseudo-piezoelectric evaluation,” Composite Struct., vol. 245, pp. 112284, 2020. DOI: . · Zbl 1442.74070
[20] Ishihara, D., Ramegowda, P. C., Aikawa, S. and Iwamaru, N., “Importance of three-dimensional piezoelectric coupling modeling in quantitative analysis of piezoelectric actuators,” Comp. Model. Engin. Sci., vol. 136, no. 2, pp. 1187-1206, 2023. DOI: .
[21] Elvin, N. G. and Elvin, A. A., “A coupled finite element-circuit simulation model for analyzing piezoelectric energy generator,” J. Intellig. Mater. Syst. Struct., vol. 20, no. 5, pp. 587-595, 2009. DOI: .
[22] Junior, C. D. M., Erturk, A. and Inman, D. J., “An electromechanical finite element model for piezoelectric energy harvester plates,” J. Sound Vibration, vol. 327, no. 1-2, pp. 9-25, 2009. DOI: .
[23] Wu, P. H. and Shu, Y. C., “Finite element modeling of electrically rectified piezoelectric energy harvesters,” Smart Mater. Struct., vol. 24, no. 9, pp. 094008, 2015. DOI: .
[24] Amini, Y., Fatehi, P., Heshmati, M. and Parandvar, H., “Time domain and frequency domain analysis of functionally graded piezoelectric harvesters subjected to random vibration: finite element modeling,” Comp. Struct., vol. 136, pp. 384-393, 2016. DOI: .
[25] Amini, Y., Emdad, H. and Farid, M., “Finite element modeling of functionally graded piezoelectric harvesters,” Comp. Struct., vol. 129, pp. 165-176, 2017. DOI: .
[26] Benjeddou, A., “Advances in piezoelectric finite element modeling of adaptive structural elements: a survey,” Comp. Struct., vol. 76, no. 1-3, pp. 347-363, 2000. DOI: .
[27] Ravi, S. and Zilian, A., “Monolithic modeling and finite element analysis of piezoelectric energy harvesters,” Acta Mech., vol. 228, no. 6, pp. 2251-2267, 2017. DOI: . · Zbl 1369.74030
[28] Ravi, S. and Zilian, A., “Time and frequency domain analysis of piezoelectric energy harvesters by monolithic finite element modeling,” Numeri. Meth Eng., vol. 112, no. 12, pp. 1828-1847, 2017. DOI: . · Zbl 1369.74030
[29] Niho, T., Horie, T., Uefuji, J. and Ishihara, D., “Stability analysis and evaluation of staggered coupled analysis methods for electromagnetic and structural coupled finite element analysis,” Comp. Struct., vol. 178, pp. 129-142, 2017. DOI: .
[30] Kuramae, H., Nishioka, H., Uetsuji, Y. and Nakamachi, E., “Development and performance evaluation of parallel iterative method for multi-scale piezoelectric analyses,” Trans. Japan Soc. Comput. Engin. Sci., vol. 2007, pp. 220070033, 2007.
[31] Ishihara, D. and Yoshimura, S., “A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation,” Int. J. Numer. Meth. Engog., vol. 64, no. 2, pp. 167-203, 2005. DOI: . · Zbl 1104.74026
[32] Fernández, M. A., Gerbeau, J. ‐F. and Grandmont, C., “A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid,” Numer. Meth Engin., vol. 69, no. 4, pp. 794-821, 2007. DOI: . · Zbl 1194.74393
[33] Badia, S., Quaini, A. and Quarteron, A., “Splitting methods based on algebraic factorization for fluid-structure interaction,” SIAM J. Sci. Comput., vol. 30, no. 4, pp. 1778-1805, 2008. DOI: . · Zbl 1368.74021
[34] Ramegowda, P. C., Ishihara, D., Takata, R., Niho, T. and Horie, T., “Hierarchically decomposed finite element method for a triply coupled piezoelectric, structure, and fluid fields of a thin piezoelectric bimorph in fluid,” Computer Methods Appl. Mechan. Engin., vol. 365, pp. 113006, 2020. DOI: . · Zbl 1442.74070
[35] Ishihara, D., Horie, T., Niho, T. and Baba, A., “Hierarchal decomposition for the structure-fluid-electrostatic interaction in a microelectromechanical system,” CMES Comp. Model. Engin. Sci., vol. 108, pp. 429-452, 2015.
[36] Felippa, C. A., Park, K. C. and Farhat, C., “Partitioned analysis of coupled mechanical systems,” Computer Methods Appl. Mech. Engin., vol. 190, no. 24-25, pp. 3247-3270, 2001. DOI: . · Zbl 0985.76075
[37] Ramegowda, P. C., Ishihara, D., Niho, T. and Horie, T., “Performance evaluation of numerical finite element coupled algorithms for structure-electric interaction analysis of MEMS piezoelectric actuator,” Int. J. Comput. Methods, vol. 16, no. 07, pp. 1850106, 2019. DOI: . · Zbl 1479.74123
[38] Minami, S. and Yoshimura, S., “Performance evaluation of nonlinear algorithms with line search for partitioned coupling technique for fluid-structure interactions,” Numerical Methods Fluids, vol. 64, no. 10-12, pp. 1129-1147, 2010. DOI: . · Zbl 1427.76216
[39] Ishihara, D., Takata, R., Ramegowda, P. C. and Takayama, N., “Strongly coupled partitioned iterative method for the structure-piezoelectric-circuit interaction using hierarchical decomposition,” Comp. Struct., vol. 253, pp. 106572, 2021. DOI: .
[40] Ramegowda, P. C., Ishihara, D., Niho, T. and Horie, T., “A novel coupling algorithm for the electric field-structure interaction using a transformation method between solid and shell elements in a thin piezoelectric bimorph plate analysis,” Finite Elements Anal. Design, vol. 159, pp. 33-49, 2019. DOI: .
[41] Takata, R., Ishihara, D., Ramegowda, P. C., Niho, T. and Horie, T., “Solid piezoelectric - shell inverse piezoelectric partitioned analysis method for thin piezoelectric bimorph with conductor layers,” Trans. Japan Soc. Comput. Engin. Sci., vol. 2019, pp. 20190011, 2019. · Zbl 1442.74070
[42] Ishihara, D., Takata, R. and Ramegowda, P. C., “Partitioned iterative method for inverse piezoelectric-direct piezoelectric-electric circuit Interaction,” Trans. Japan Soc. Comput. Engin. Sci., vol. 2020, pp. 20200015, 2020.
[43] Noguchi, H. and Hisada, T., “Sensitivity analysis in post buckling problems of shell structures,” Comp. Struct., vol. 47, no. 4-5, pp. 699-710, 1993. DOI: . · Zbl 0782.73070
[44] Zhu, M., Worthington, E. and Njuguna, J., “Analyses of Power Output of Piezoelectric Energy-Harvesting Devices Directly Connected to a Load Resistor Using a Coupled Piezoelectric-Circuit Finite Element Method,” IEEE Trans Ultrason Ferroelectr Freq Control., vol. 56, no. 7, pp. 1309-1318, 2009. DOI: .
[45] Lefeuvre, E., Audigier, D., Richard, C. and Guyomar, D., “Buck-Boost Converter for Sensorless Power Optimization of Piezoelectric Energy Harvester,” IEEE Trans. Power Electron, vol. 22, no. 5, pp. 2018-2025, 2007. DOI: .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.