×

Vanquishing volumetric locking in quadratic NURBS-based discretizations of nearly-incompressible linear elasticity: CAS elements. (English) Zbl 07868709

Summary: Quadratic NURBS-based discretizations of the Galerkin method suffer from volumetric locking when applied to nearly-incompressible linear elasticity. Volumetric locking causes not only smaller displacements than expected, but also large-amplitude spurious oscillations of normal stresses. Continuous-assumed-strain (CAS) elements have been recently introduced to remove membrane locking in quadratic NURBS-based discretizations of linear plane curved Kirchhoff rods [H. Casquero et al., Comput. Methods Appl. Mech. Eng. 360, Article ID 112765, 34 p. (2020; Zbl 1441.74111)]. In this work, we propose two generalizations of CAS elements (named CAS1 and CAS2 elements) to overcome volumetric locking in quadratic NURBS-based discretizations of nearly-incompressible linear elasticity. CAS1 elements linearly interpolate the strains at the knots in each direction for the term in the variational form involving the first Lamé parameter while CAS2 elements linearly interpolate the dilatational strains at the knots in each direction. For both element types, a displacement vector with \(C^1\) continuity across element boundaries results in assumed strains with \(C^0\) continuity across element boundaries. In addition, the implementation of the two locking treatments proposed in this work does not require any additional global or element matrix operations such as matrix inversions or matrix multiplications. The locking treatments are applied at the element level and the nonzero pattern of the global stiffness matrix is preserved. The numerical examples solved in this work show that CAS1 and CAS2 elements, using either two or three Gauss-Legrendre quadrature points per direction, are effective locking treatments since they not only result in more accurate displacements for coarse meshes, but also remove the spurious oscillations of normal stresses.

MSC:

74S22 Isogeometric methods applied to problems in solid mechanics
74B05 Classical linear elasticity

Citations:

Zbl 1441.74111

Software:

PetIGA; PETSc

References:

[1] Cottrell, JA; Reali, A.; Bazilevs, Y.; Hughes, TJR, Isogeometric analysis of structural vibrations, Comput Methods Appl Mech Eng, 195, 5257-5296, 2006 · Zbl 1119.74024
[2] Hughes, TJR; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of \(p\)-method finite elements with \(k\)-method NURBS, Comput Methods Appl Mech Eng, 197, 4104-4124, 2008 · Zbl 1194.74114
[3] Hughes, TJR; Evans, JA; Reali, A., Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput Methods Appl Mech Eng, 272, 290-320, 2014 · Zbl 1296.65148
[4] Hughes, TJR; Cottrell, JA; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135-4195, 2005 · Zbl 1151.74419
[5] Cottrell, JA; Hughes, TJR; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, 2009, Hoboken: Wiley, Hoboken · Zbl 1378.65009
[6] Lipton, S.; Evans, J.; Bazilevs, Y.; Elguedj, T.; Hughes, TJR, Robustness of isogeometric structural discretizations under severe mesh distortion, Comput Methods Appl Mech Eng, 199, 357-373, 2010 · Zbl 1227.74112
[7] Elguedj, T.; Bazilevs, Y.; Calo, VM; Hughes, TJR, \( \overline{B}\) and \(\overline{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput Methods Appl Mech Eng, 197, 2732-2762, 2008 · Zbl 1194.74518
[8] Flanagan, D.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int J Numer Methods Eng, 17, 5, 679-706, 1981 · Zbl 0478.73049
[9] Belytschko, T.; Ong, JSJ; Liu, WK; Kennedy, JM, Hourglass control in linear and nonlinear problems, Comput Methods Appl Mech Eng, 43, 3, 251-276, 1984 · Zbl 0522.73063
[10] Reese, S.; Küssner, M.; Reddy, BD, A new stabilization technique for finite elements in non-linear elasticity, Int J Numer Methods Eng, 44, 11, 1617-1652, 1999 · Zbl 0927.74070
[11] Reese, S.; Wriggers, P.; Reddy, B., A new locking-free brick element technique for large deformation problems in elasticity, Comput Struct, 75, 3, 291-304, 2000
[12] Nagtegaal, JC; Parks, DM; Rice, J., On numerically accurate finite element solutions in the fully plastic range, Comput Methods Appl Mech Eng, 4, 2, 153-177, 1974 · Zbl 0284.73048
[13] Hughes, TJR, Generalization of selective integration procedures to anisotropic and nonlinear media, Int J Numer Methods Eng, 15, 9, 1413-1418, 1980 · Zbl 0437.73053
[14] Hughes, TJR, Equivalence of finite elements for nearly incompressible elasticity, J Appl Mech, 44, 1, 181-183, 1977
[15] Malkus, DS; Hughes, TJR, Mixed finite element methods-reduced and selective integration techniques: a unification of concepts, Comput Methods Appl Mech Eng, 15, 1, 63-81, 1978 · Zbl 0381.73075
[16] Hughes, TJR; Malkus, DS; Atluri, SN, A general penalty/mixed equivalence theorem for anisotropic, incompressible finite elements, Hybrid and mixed finite element methods, 487-496, 1981, Hoboken: Wiley, Hoboken
[17] Wilson, E.; Taylor, R.; Doherty, W.; Ghaboussi, J.; Fenves, SJ, Incompatible displacement models, Numerical and computer methods in structural mechanics, 43-57, 1973, New York: Academic Press, New York
[18] Simo, JC; Rifai, M., A class of mixed assumed strain methods and the method of incompatible modes, Int J Numer Methods Eng, 29, 8, 1595-1638, 1990 · Zbl 0724.73222
[19] Simo, JC; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int J Numer Methods Eng, 33, 7, 1413-1449, 1992 · Zbl 0768.73082
[20] Glaser, S.; Armero, F., On the formulation of enhanced strain finite elements in finite deformations, Eng Comput, 14, 759-791, 1997 · Zbl 1071.74699
[21] Kasper, EP; Taylor, RL, A mixed-enhanced strain method: part I: geometrically linear problems, Comput Struct, 75, 3, 237-250, 2000
[22] Kasper, EP; Taylor, RL, A mixed-enhanced strain method: part II: geometrically nonlinear problems, Comput Struct, 75, 3, 251-260, 2000
[23] Auricchio, F.; da Veiga, LB; Lovadina, C.; Reali, A.; Sangalli, G., A fully “locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation, Comput Methods Appl Mech Eng, 197, 1-4, 160-172, 2007 · Zbl 1169.74643
[24] Elguedj, T.; Hughes, TJR, Isogeometric analysis of nearly incompressible large strain plasticity, Comput Methods Appl Mech Eng, 268, 388-416, 2014 · Zbl 1295.74019
[25] Antolin, P.; Bressan, A.; Buffa, A.; Sangalli, G., An isogeometric method for linear nearly-incompressible elasticity with local stress projection, Comput Methods Appl Mech Eng, 316, 694-719, 2017 · Zbl 1439.74039
[26] Bressan, A., Isogeometric regular discretization for the Stokes problem, IMA J Numer Anal, 31, 4, 1334-1356, 2011 · Zbl 1418.76041
[27] Bressan, A.; Sangalli, G., Isogeometric discretizations of the Stokes problem: stability analysis by the macroelement technique, IMA J Numer Anal, 33, 2, 629-651, 2013 · Zbl 1328.76025
[28] Taylor, R., Isogeometric analysis of nearly incompressible solids, Int J Numer Methods Eng, 87, 1-5, 273-288, 2011 · Zbl 1242.74168
[29] Cardoso, RP; CesardeSa, JMA, The enhanced assumed strain method for the isogeometric analysis of nearly incompressible deformation of solids, Int J Numer Methods Eng, 92, 1, 56-78, 2012 · Zbl 1352.74332
[30] Moutsanidis, G.; Li, W.; Bazilevs, Y., Reduced quadrature for FEM, IGA and meshfree methods, Comput Methods Appl Mech Eng, 373, 2021 · Zbl 1506.65050
[31] Li, W.; Moutsanidis, G.; Behzadinasab, M.; Hillman, M.; Bazilevs, Y., Reduced quadrature for finite element and isogeometric methods in nonlinear solids, Comput Methods Appl Mech Eng, 399, 2022 · Zbl 1507.74490
[32] Adam, C.; Hughes, TJR; Bouabdallah, S.; Zarroug, M.; Maitournam, H., Selective and reduced numerical integrations for NURBS-based isogeometric analysis, Comput Methods Appl Mech Eng, 284, 732-761, 2015 · Zbl 1425.65138
[33] Nagy, AP; Benson, DJ, On the numerical integration of trimmed isogeometric elements, Comput Methods Appl Mech Eng, 284, 165-185, 2015 · Zbl 1425.65040
[34] Breitenberger, M.; Apostolatos, A.; Philipp, B.; Wüchner, R.; Bletzinger, KU, Analysis in computer aided design: nonlinear isogeometric B-Rep analysis of shell structures, Comput Methods Appl Mech Eng, 284, 401-457, 2015 · Zbl 1425.65030
[35] Leidinger, L.; Breitenberger, M.; Bauer, A., Explicit dynamic isogeometric B-Rep analysis of penalty-coupled trimmed NURBS shells, Comput Methods Appl Mech Eng, 351, 891-927, 2019 · Zbl 1441.74256
[36] Buffa, A.; Puppi, R.; Vázquez, R., A minimal stabilization procedure for isogeometric methods on trimmed geometries, SIAM J Numer Anal, 58, 5, 2711-2735, 2020 · Zbl 1453.65403
[37] Wei, X.; Marussig, B.; Antolin, P.; Buffa, A., Immersed boundary-conformal isogeometric method for linear elliptic problems, Comput Mech, 68, 6, 1385-1405, 2021 · Zbl 1479.74130
[38] Antolin, P.; Wei, X.; Buffa, A., Robust numerical integration on curved polyhedra based on folded decompositions, Comput Methods Appl Mech Eng, 395, 2022 · Zbl 1507.65063
[39] Toshniwal, D.; Speleers, H.; Hughes, TJR, Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: geometric design and isogeometric analysis considerations, Comput Methods Appl Mech Eng, 327, 411-458, 2017 · Zbl 1439.65017
[40] Casquero, H.; Wei, X.; Toshniwal, D., Seamless integration of design and Kirchhoff-Love shell analysis using analysis-suitable unstructured T-splines, Comput Methods Appl Mech Eng, 360, 2020 · Zbl 1441.74111
[41] Hiemstra, RR; Shepherd, KM; Johnson, MJ; Quan, L.; Hughes, TJR, Towards untrimmed NURBS: CAD embedded reparameterization of trimmed B-rep geometry using frame-field guided global parameterization, Comput Methods Appl Mech Eng, 369, 2020 · Zbl 1506.65036
[42] Wei, X.; Li, X.; Qian, K.; Hughes, TJR; Zhang, YJ; Casquero, H., Analysis-suitable unstructured T-splines: multiple extraordinary points per face, Comput Methods Appl Mech Eng, 391, 2022 · Zbl 1507.65048
[43] Shepherd, KM; Gu, XD; Hughes, TJR, Isogeometric model reconstruction of open shells via Ricci flow and quadrilateral layout-inducing energies, Eng Struct, 252, 2022
[44] Shepherd, KM; Gu, XD; Hughes, TJR, Feature-aware reconstruction of trimmed splines using Ricci flow with metric optimization, Comput Methods Appl Mech Eng, 402, 2022 · Zbl 1507.65108
[45] Toshniwal, D., Quadratic splines on quad-tri meshes: construction and an application to simulations on watertight reconstructions of trimmed surfaces, Comput Methods Appl Mech Eng, 388, 2022 · Zbl 1507.74514
[46] Wen, Z.; Faruque, MS; Li, X.; Wei, X.; Casquero, H., Isogeometric analysis using G-spline surfaces with arbitrary unstructured quadrilateral layout, Comput Methods Appl Mech Eng, 408, 2023 · Zbl 1539.65126
[47] Fahrendorf F, Morganti S, Reali A, Hughes TJR, De Lorenzis L (2020) Mixed stress-displacement isogeometric collocation for nearly incompressible elasticity and elastoplasticity. Comput Methods Appl Mech Eng 369:113112 · Zbl 1506.74060
[48] Morganti, S.; Fahrendorf, F.; De Lorenzis, L.; Evans, JA; Hughes, TJR; Reali, A., Isogeometric collocation: a mixed displacement-pressure method for nearly incompressible elasticity, CMES Comput Model Eng Sci, 129, 3, 1125-1150, 2021
[49] Casquero, H.; Golestanian, M., Removing membrane locking in quadratic NURBS-based discretizations of linear plane Kirchhoff rods: CAS elements, Comput Methods Appl Mech Eng, 399, 2022 · Zbl 1507.74455
[50] Golestanian, M.; Casquero, H., Extending CAS elements to remove shear and membrane locking from quadratic NURBS-based discretizations of linear plane Timoshenko rods, Int J Numer Methods Eng, 124, 18, 3997-4021, 2023 · Zbl 1542.74074
[51] Casquero H, Mathews KD (2023) Overcoming membrane locking in quadratic NURBS-based discretizations of linear Kirchhoff-Love shells: CAS elements. Comput Methods Appl Mech Eng 417:116523 · Zbl 1536.74295
[52] Hughes, TJR, The finite element method: linear static and dynamic finite element analysis, 2012, Chelmsford: Courier Corporation, Chelmsford
[53] Dalcin, L.; Collier, N.; Vignal, P.; Côrtes, A.; Calo, VM, PetIGA: a framework for high-performance isogeometric analysis, Comput Methods Appl Mech Eng, 308, 151-181, 2016 · Zbl 1439.65003
[54] Balay S, Adams MF, Brown J, et al (2014) PETSc web page. http://www.mcs.anl.gov/petsc
[55] Cook, R.; Malkus, DS; Plesha, M.; Witt, RJ, Concepts and applications of finite element analysis, 2007, Hoboken: Wiley, Hoboken
[56] CesardeSa, JMA; Natal Jorge, RM, New enhanced strain elements for incompressible problems, Int J Numer Methods Eng, 44, 2, 229-248, 1999 · Zbl 0937.74062
[57] Chavan, KS; Lamichhane, BP; Wohlmuth, BI, Locking-free finite element methods for linear and nonlinear elasticity in 2D and 3D, Comput Methods Appl Mech Eng, 196, 41-44, 4075-4086, 2007 · Zbl 1173.74404
[58] Schröder, J.; Wick, T.; Reese, S., A selection of benchmark problems in solid mechanics and applied mathematics, Arch Comput Methods Eng, 28, 713-751, 2021
[59] Dolbow, J.; Belytschko, T., Volumetric locking in the element free Galerkin method, Int J Numer Methods Eng, 46, 6, 925-942, 1999 · Zbl 0967.74079
[60] Huerta, A.; Fernández-Méndez, S., Locking in the incompressible limit for the element-free Galerkin method, Int J Numer Methods Eng, 51, 11, 1361-1383, 2001 · Zbl 1065.74635
[61] Nguyen, TH; Hiemstra, RR; Schillinger, D., Leveraging spectral analysis to elucidate membrane locking and unlocking in isogeometric finite element formulations of the curved Euler-Bernoulli beam, Comput Methods Appl Mech Eng, 388, 2022 · Zbl 1507.74500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.