×

Yang-Baxter maps of KdV, NLS and DNLS type on division rings. (English) Zbl 07868605

Summary: We construct nocommutative set-theoretical solutions to the Yang-Baxter equation related to the KdV, the NLS and the derivative NLS equations. In particular, we construct several Yang-Baxter maps of KdV type and we show that one of them is completely integrable in the Liouville sense. Then, we construct a noncommutative KdV type Yang-Baxter map which can be squeezed down to the noncommutative discrete potential KdV equation. Moreover, we construct Darboux transformations for the noncommutative derivative NLS equation. Finally, we consider matrix refactorisation problems for noncommutative Darboux matrices associated with the NLS and the derivative NLS equation and we construct noncommutative maps. We prove that the latter are solutions to the Yang-Baxter equation.

MSC:

37K60 Lattice dynamics; integrable lattice equations
39A36 Integrable difference and lattice equations; integrability tests
16T25 Yang-Baxter equations
17B38 Yang-Baxter equations and Rota-Baxter operators
35Q55 NLS equations (nonlinear Schrödinger equations)
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Papageorgiou, V. G.; Tongas, A. G.; Veselov, A. P., Yang-Baxter maps and symmetries of integrable equations on quad-graphs, J. Math. Phys., 47, Article 083502 pp., 2006 · Zbl 1112.82017
[2] Goncharenko, V. M.; Veselov, A. P., Yang-Baxter maps and matrix solitons, (Shabat, A. B.; etal., New Trends in Integrability and Partial Solvability, 2004, Kluwer Academic Publishers: Kluwer Academic Publishers Netherlands), 191-197 · Zbl 1061.35091
[3] Konstantinou-Rizos, S.; Mikhailov, A. V., Darboux transformations, finite reduction groups and related Yang-Baxter maps, J. Phys. A, 46, Article 425201 pp., 2013 · Zbl 1276.81069
[4] Grahovski, G. G.; Konstantinou-Rizos, S.; Mikhailov, A. V., Grassmann extensions of Yang-Baxter maps, J. Phys. A, 49, Article 145202 pp., 2016 · Zbl 1345.81055
[5] Mikhailov, A. V.; Papamikos, G.; Wang, J. P., Darboux transformation for the vector sine-Gordon equation and integrable equations on a sphere, Lett. Math. Phys., 106, 973-996, 2016 · Zbl 1358.35149
[6] Kouloukas, T. E.; Papageorgiou, V. G., Yang-Baxter maps with first-degree-polynomial 2 ×2 Lax matrices, J. Phys. A, 42, Article 404012 pp., 2009 · Zbl 1217.37067
[7] Bobenko, A. I.; Suris, Yu. B., Integrable noncommutative equations on quad-graphs. The consistency approach, Lett. Math. Phys., 61, 241-254, 2002 · Zbl 1075.37023
[8] Dimakis, A.; Müller-Hoissen, F., Burgers and Kadomtsev-Petviashvili hierarchies: A functional representation approach, Theoret. Math. Phys., 152, 933-947, 2007 · Zbl 1131.35070
[9] Dimakis, A.; Müller-Hoissen, F., Simplex and polygon equations, SIGMA, 11, 042, 2015 · Zbl 1338.06001
[10] Doliwa, A.; Noumi, M., The Coxeter relations and KP map for non-commuting symbols, Lett. Math. Phys., 110, 2743-2762, 2020 · Zbl 1460.37065
[11] Kupershmidt, B. A., (Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems. Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems, Math. Surv. and Monographs, vol. 78, 2000, AMS) · Zbl 0971.37032
[12] Nijhoff, F. W.; Capel, H. W., The direct linearization approach to hierarchies of integrable PDE’s in \(2 + 1\) dimensions. I. Lattice equations and the differential-difference hierarchies, Inverse Problems, 6, 567-590, 1990 · Zbl 0717.35079
[13] Nimmo, J. J.C., On a non-Abelian Hirota-Miwa equation, J. Phys. A: Math. Gen., 39, 5053, 2006 · Zbl 1094.37038
[14] Talalaev, D. V., Tetrahedron equation: algebra, topology, and integrability, Russian Math. Surveys, 76, 685-721, 2021 · Zbl 1494.16037
[15] Adler, V.; Bobenko, A.; Suris, Y., Geometry of Yang-Baxter maps: pencils of conics and quadrirational mappings, Comm. Anal. Geom., 12, 5, 967-1007, 2004 · Zbl 1065.14015
[16] Doliwa, A., Non-commutative rational Yang-Baxter maps, Lett. Math. Phys., 104, 299-309, 2014 · Zbl 1306.37073
[17] Kassotakis, P., Non-Abelian hierarchies of compatible maps, associated integrable difference systems and Yang-Baxter maps, Nonlinearity, 36, 2514, 2023 · Zbl 1515.37080
[18] Kassotakis, P.; Kouloukas, T., On non-abelian quadrirational Yang-Baxter maps, J. Phys. A, 55, Article 175203 pp., 2022 · Zbl 1505.82014
[19] Konstantinou-Rizos, S.; Kouloukas, T., A noncommutative discrete potential KdV lift, J. Math. Phys., 59, Article 063506 pp., 2018 · Zbl 1395.37046
[20] Igonin, S.; Konstantinou-Rizos, S., Local Yang-Baxter correspondences and set-theoretical solutions to the Zamolodchikov tetrahedron equation, J. Phys. A, 56, Article 275202 pp., 2023, (18pp) · Zbl 1516.37076
[21] Konstantinou-Rizos, S.; Mikhailov, A. V.; Xenitidis, P., Reduction groups and related integrable difference systems of nonlinear Schrödinger type, J. Math. Phys., 56, Article 082701 pp., 2015 · Zbl 1328.35213
[22] Adler, V., Recuttings of polygons, Funktsional. Anal. i Prilozhen., 27, 79-82, 1993 · Zbl 0812.58072
[23] Suris, Yu. B.; Veselov, A. P., Lax matrices for Yang-Baxter maps, J. Nonlinear Math. Phys., 10, 223-230, 2003 · Zbl 1362.39016
[24] Fordy, A. P., Periodic cluster mutations and related integrable maps, J. Phys. A, 47, Article 474003 pp., 2014 · Zbl 1318.37015
[25] Veselov, A. P., Integrable maps, Russian Math. Surveys, 46, 1-51, 1991 · Zbl 0785.58027
[26] Kouloukas, T.; Papageorgiou, V., Entwining Yang-Baxter maps and integrable lattices, (Algebra, Geometry and Mathematical Physics. Algebra, Geometry and Mathematical Physics, Banach Center Publ., vol. 93, 2011, Polish Acad. Sci. Inst. Math.), 163-175, 073502 · Zbl 1248.81087
[27] Veselov, A. P., Yang-Baxter maps and integrable dynamics, Phys. Lett. A, 314, 214-221, 2023 · Zbl 1051.81014
[28] Kassotakis, P.; Nieszporski, M.; Papageorgiou, V.; Tongas, A., Integrable two-component systems of difference equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 476, Article 20190668 pp., 2020 · Zbl 1439.39005
[29] Kels, A. P., Two-component Yang-Baxter maps and startriangle relations, Physica D, 448, Article 133723 pp., 2023 · Zbl 1522.81123
[30] Adler, V.; Bobenko, A.; Suris, Y., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys., 233, 513-543, 2003 · Zbl 1075.37022
[31] Fisenko, X.; Konstantinou-Rizos, S.; Xenitidis, P., A discrete Darboux-Lax scheme for integrable difference equations, Chaos Solitons Fractals, 158, Article 112059 pp., 2022 · Zbl 1505.39015
[32] Konstantinou-Rizos, S.; Xenitidis, P., Integrable discretisations of a noncommutative NLS equation, 2024, in preparation
[33] Papageorgiou, V. G.; Tongas, A. G., Yang-Baxter maps and multi-field integrable lattice equations, J. Phys. A, 40, 12677-12690, 2007 · Zbl 1155.35466
[34] Buchstaber, V. M.; Igonin, S.; Konstantinou-Rizos, S.; Preobrazhenskaia, M. M., Yang-Baxter maps, Darboux transformations, and linear approximations of refactorisation problems, J. Phys. A, 53, Article 504002 pp., 2020 · Zbl 1519.58020
[35] Konstantinou-Rizos, S.; Papamikos, G., Entwining Yang-Baxter maps related to NLS type equations, J. Phys. A, 52, Article 485201 pp., 2019 · Zbl 1509.16033
[36] Adamopoulou, P.; Papamikos, G., Entwining Yang-Baxter maps over Grassmann algebras, 2023, arXiv:2311.18673
[37] Konstantinou-Rizos, S., Noncommutative solutions to Zamolodchikov’s tetrahedron equation and matrix six-factorisation problems, Phys. D, 440, Article 133466 pp., 2022 · Zbl 07599650
[38] Kassotakis, P.; Nieszporski, M.; Papageorgiou, V.; Tongas, A., Tetrahedron maps and symmetries of three dimensional integrable discrete equations, J. Math. Phys., 60, Article 123503 pp., 2019 · Zbl 1439.37074
[39] Kassotakis, P.; Nieszporski, M., On non-multiaffine consistent-around-the-cube lattice equations, Phys. Lett. A, 376, 3135-3140, 2012 · Zbl 1266.37038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.