×

Three-dimensional simulation of single- and multiphase flow in roughness microchannels. (Russian. English summary) Zbl 07868521

Sib. Zh. Ind. Mat. 26, No. 2, 130-141 (2023); translation in J. Appl. Ind. Math. 17, No. 2, 396-404 (2023).

MSC:

76-XX Fluid mechanics
86-XX Geophysics

References:

[1] L. A. Kovaleva, A. Musin, A., R. R. Zinnatullin, I. Sh. Akhatov, “Destruction of water-in-oil emulsions in electromagnetic fields”, ASME 2011 Internat. Mech. Engrg. Congress and Exposition, IMECE, v. 6, 2011, 617-621 · doi:10.1115/imece2011-62935
[2] L. A. Kovaleva, A. A. Musin, Yu. I. Fatkhullina, “Microwave heating of an emulsion drop”, High Temperature, 56:2 (2018), 234-238 · doi:10.1134/S0018151X18020141
[3] O. A. Abramova, Yu. A. Pityuk, N. A. Gumerov, I. Akhatov, “S An efficient method for simulation of the dynamics of a large number of deformable droplets in the stokes regime”, Dokl. Phys, 59:5 (2014), 236-240 · doi:10.1134/S102833581405005X
[4] J. F. Roca, M. Carvalho, “S Flow of a drop through a constricted microcapillary”, Comput. Fluids, 87 (2013), 50-56 · Zbl 1290.76071 · doi:10.1016/j.compfluid.2012.11.020
[5] L. C. Wrobel, D. Soares, C. L. Bhaumik, “Drop deformation in Stokes flow through converging channels”, Engrg. Analysis with Boundary Elements, 33:7 (2009), 993-1000 · Zbl 1244.76063 · doi:10.1016/j.enganabound.2009.01.009
[6] B. Yin, H. Luo, “Numerical simulation of drops inside an asymmetric microchannel with protrusions”, Comput. Fluids, 82 (2013), 14-28 · Zbl 1290.76151 · doi:10.1016/j.compfluid.2013.05.005
[7] S. A. Sivak, M. E. Royak, I. M. Stupakov, “Ispolzovanie metoda bystrykh multipolei pri optimi zatsii metoda granichnykh elementov dlya resheniya uravneniya Gelmgoltsa”, Sib. zhurn. industr. matematiki, 24:3 (2021), 83-100 · Zbl 1514.65186 · doi:10.33048/SIBJIM.2021.24.307
[8] N. A. Gumerov, R. Duraiswami, “Fast multipole methods on graphics processors”, J. Comput. Phys, 227:18 (2008), 8290-8313 · Zbl 1147.65012 · doi:10.1016/j.jcp.2008.05.023
[9] A. Rawool, S. K. Mitra, S. G. Kandlikar, “Numerical simulation of flow through microchannels with designed roughness”, Microfluidics and Nanofluidics, 2:3 (2006), 215-221 · doi:10.1007/s10404-005-0064-5
[10] Z. Li, J. Wan, H. Zhan, L. He, K. Huang, “An energy perspective of pore scale simulation and experimental evidence of fluid flow in a rough conduit”, J. Hydrol., 587 (2020), 125010 · doi:10.1016/j.jhydrol.2020.125010
[11] J. B. Taylor, A. L. Carrano, S. G. Kandlikar, “Characterization of the effect of surface roughness and texture on fluid flow past, present, and future”, Internat. J. Thermal Sci, 45:10 (2006), 962-968 · doi:10.1016/j.ijthermalsci.2006.01.004
[12] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Univ. Press, Cambridge, 1992 · Zbl 0772.76005
[13] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970
[14] Y. Saad, Iterative Methods for Sparse Linear System, SIAM, Philadelphia, 2000
[15] Y. A. Itkulova, O. A. Solnyshkina, N. A. Gumerov, “Toward large scale simulations of emulsion flows in microchannels using fast multipole and graphics processor accelerated boundary element method”, ASME 2012 Internat. Mech. Engrg. Congress and Exposition, 2012, 873-881 · doi:10.1115/IMECE2012-86238
[16] J. H. Spurk, H. Aksel, Fluid Mechanics, Springer-Verl, Berlin-Heidelberg, 2008 · Zbl 1145.76002
[17] O. A. Solnyshkina, N. B. Fatkullina, A. Z. Bulatova, “Three-dimensional simulation of drop motion in channels of different cross-sections”, J. Phys. Conf. Ser., 1675 (2020), 012099 · doi:10.1088/1742-6596/1675/1/012099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.