×

Dependence of eigenvalue of Sturm-Liouville operators on the real coupled boundary condition. (English) Zbl 07867878

Summary: In this paper, we discuss the continuous dependence of eigenvalue of Sturm-Liouville operators on the real coupled boundary condition by using of implicit function theorem. A geometric structure on \(\mathrm{SL}(2, \mathbb{R})\) containing real coupled boundary conditions is firstly clarified, that is, the smooth embedding submanifold. Under this structure, we verify the continuous differentiability of the \(n\)-th eigenvalue with regard to the boundary condition and explicitly present the expression for its differential. Moreover, a sufficient condition for recognizing double eigenvalues is given.

MSC:

34B24 Sturm-Liouville theory
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
47J07 Abstract inverse mapping and implicit function theorems involving nonlinear operators
Full Text: DOI

References:

[1] Bailey, P. B.; Everitt, W. N.; Zettl, A., Regular and singular Sturm-Liouville problems with coupled boundary conditions, Proc. R. Soc. Edinb., Sect. A, 126, 505-514, 1996 · Zbl 0855.34026
[2] Chang, K. C., Methods in Nonlinear Analysis, 2005, Springer: Springer Beijing · Zbl 1081.47001
[3] do Carmo, M., Riemannian Geometry, Boston, Mathematics. Theory and Application, 1992 · Zbl 0752.53001
[4] Dahlberg, Bjorn E. J.; Trubowitz, E., The inverse Sturm-Liouville problem. III, Commun. Pure Appl. Math., 37, 255-267, 1984 · Zbl 0601.34017
[5] Eastham, M. S.P.; Kong, Q.; Wu, H.; Zettl, A., Inequalities among eigenvalues of Sturm-Liouville problems, J. Inequal. Appl., 3, 25-43, 1999 · Zbl 0927.34017
[6] Everitt, W. N.; Möller, M.; Zettl, A., Discontinuous dependence of the n-th Sturm-Liouville eigenvalue, (General Inequalities, vol. 7, 1995), 145-150 · Zbl 0886.34023
[7] Haertzen, K.; Kong, Q.; Wu, H.; Zettl, A., Geometric aspects of Sturm-Liouville problems II. Space of boundary conditions for left-definiteness, Trans. Am. Math. Soc., 356, 135-157, 2003 · Zbl 1056.34037
[8] Isaacson, E. L.; Mckean, H. P.; Trubowitz, E., The inverse Sturm-Liouville problem. II, Commun. Pure Appl. Math., 37, 1-11, 1984 · Zbl 0552.58024
[9] Isaacson, E. L.; Trubowitz, E., The inverse Sturm-Liouville problem. I, Commun. Pure Appl. Math., 36, 767-783, 1983 · Zbl 0507.58037
[10] Kong, Q.; Wu, H.; Zettl, A., Dependence of eigenvalues on the problem, Math. Nachr., 188, 173-201, 1997 · Zbl 0888.34017
[11] Kong, Q.; Wu, H.; Zettl, A., Geometric aspects of Sturm-Liouville problems, I. Structures on spaces of boundary conditions, Proc. R. Soc. Edinb., Sect. A, 130, 561-589, 2000 · Zbl 0957.34024
[12] Kong, Q.; Zettl, A., Dependence of eigenvalues of Sturm-Liouville problems on the boundary, J. Differ. Equ., 126, 389-407, 1996 · Zbl 0856.34027
[13] Kong, Q.; Zettl, A., Eigenvalues of regular Sturm-Liouville problems, J. Differ. Equ., 131, 1-19, 1996 · Zbl 0862.34020
[14] Lee, J. M., Introduction to Smooth Manifolds, 2013, Springer: Springer New York · Zbl 1258.53002
[15] Li, J.; Qi, J., Continuous dependence of eigenvalues on potential functions for nonlocal Sturm-Liouville equations, Math. Methods Appl. Sci., 46, 10617-10623, 2023 · Zbl 1538.34107
[16] Poschel, P.; Trubowitz, E., Inverse Spectral Theory, 1987, Academic Press: Academic Press Boston · Zbl 0623.34001
[17] Wei, G.; Xu, Z., Inequalities among between indefinite and definite Sturm-Liouville problems, Acta Math. Sinica (Chin. Ser.), 48, 773-780, 2005, (in Chinese) · Zbl 1124.34305
[18] Yang, X., Continuous dependence of eigenvalues of regular Sturm-Liouville differential operators on the boundary condition, Adv. Math. (China), 49, 443-452, 2020, (in Chinese) · Zbl 1463.34352
[19] Zettl, A., Sturm-Liouville Theory, Mathematical Surveys and Monographs, vol. 121, 2005, American Mathematical Society: American Mathematical Society Providence · Zbl 1074.34030
[20] Zhu, H.; Shi, Y., Continuous dependence of the n-th eigenvalue of self-adjoint discrete Sturm-Liouville problems on the problem, J. Differ. Equ., 260, 5987-6016, 2016 · Zbl 1383.39011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.