×

Absolutely continuous invariant measures for random dynamical systems of beta-transformations. (English) Zbl 07867494

Summary: We consider an independent and identically distributed (i.i.d.) random dynamical system of simple linear transformations on the unit interval \(T_\beta(x)=\beta x\pmod 1\), \(x\in[0,1]\), \(\beta>0\), which are the so-called beta-transformations. For such a random dynamical system, including the case that it is generated by uncountably many maps, we give an explicit formula for the density function of a unique stationary measure under the assumption that the random dynamics is expanding in mean. As an application, in the case that the random dynamics is generated by finitely many maps and the maps are chosen according to a Bernoulli measure, we show that the density function is analytic as a function of parameter in the Bernoulli measure and give its derivative explicitly. Furthermore, for a non-i.i.d. random dynamical system of beta-transformations, we also give an explicit formula for the random densities of a unique absolutely continuous invariant measure under a certain strong expanding condition or under the assumption that the maps randomly chosen are close to the beta-transformation for a non-simple number in the sense of parameter \(\beta\).
{© 2024 IOP Publishing Ltd & London Mathematical Society}

MSC:

37H12 Random iteration
37E05 Dynamical systems involving maps of the interval
37A05 Dynamical aspects of measure-preserving transformations

References:

[1] Bahsoun, W.; Ruziboev, M.; Saussol, B., Linear response for random dynamical systems, Adv. Math., 364, 2020 · Zbl 1475.37059 · doi:10.1016/j.aim.2020.107011
[2] Baladi, V., Positive Transfer Operators and Decay of Correlations, vol 16, 2000, World Scientific · Zbl 1012.37015
[3] Boyarsky, A.; Góra, P., Laws of Chaos. Invariant Measures and Dynamical Systems in one Dimension (Probability and its Applications), 1997, Birkhäuser · Zbl 0893.28013
[4] Buzzi, J., Absolutely continuous S.R.B. measures for random Lasota-Yorke maps, Trans. Am. Math. Soc., 352, 3289-303, 2000 · Zbl 0956.37021 · doi:10.1090/S0002-9947-00-02607-6
[5] Dajani, K.; Kraaikamp, C., Random β-expansions, Ergod. Theory Dyn. Syst., 23, 461-79, 2003 · Zbl 1035.37006 · doi:10.1017/S0143385702001141
[6] Dajani, K.; de Vries, M., Invariant densities for random β-expansions, J. Eur. Math. Soc., 9, 157-76, 2007 · Zbl 1117.28012 · doi:10.4171/jems/76
[7] Dunford, N.; Schwartz, J. T., Linear Operators. Part I: General Theory, 1958, Interscience · Zbl 0084.10402
[8] Flatto, L.; Lagarias, J.; Poonen, B., The zeta function of the beta transformation, Ergod. Theory Dyn. Syst., 14, 237-66, 1994 · Zbl 0843.58106 · doi:10.1017/S0143385700007860
[9] Gel’fond, A., A common property of number systems, Izv. Akad. Nauk SSSR. Ser. Mat., 23, 809-14, 1959 · Zbl 0092.27702
[10] Galatolo, S.; Sedro, J., Quadratic response of random and deterministic dynamical systems, Chaos, 30, 2020 · Zbl 1434.37032 · doi:10.1063/1.5122658
[11] Góra, P., Invariant densities for generalized β-maps, Ergod. Theory Dyn. Syst., 27, 1583-98, 2007 · Zbl 1123.37015 · doi:10.1017/S0143385707000053
[12] Góra, P., Invariant densities for piecewise linear maps of the unit interval, Ergod. Theory Dyn. Syst., 29, 1549-83, 2009 · Zbl 1188.37045 · doi:10.1017/S0143385708000801
[13] Inoue, T., Invariant measures for position dependent random maps with continuous random parameters, Stud. Math., 208, 11-29, 2012 · Zbl 1267.37054 · doi:10.4064/sm208-1-2
[14] Ito, S.; Tanaka, S.; Nakada, H., On unimodal linear transformations and chaos. I, Tokyo J. Math., 2, 221-39, 1979 · Zbl 0461.28016 · doi:10.3836/tjm/1270216320
[15] Kalle, C.; Maggioni, M., Invariant densities for random systems of the interval, Ergod. Theory Dyn. Syst., 42, 141-79, 2022 · Zbl 1486.37022 · doi:10.1017/etds.2020.127
[16] Kempton, T., On the invariant density of the random β-transformation, Acta Math. Hung., 142, 403-19, 2014 · Zbl 1299.11011 · doi:10.1007/s10474-013-0377-x
[17] Kopf, C., Invariant measures for piecewise linear transformations of the interval, Appl. Math. Comput., 39, 123-44, 1990 · Zbl 0712.28007 · doi:10.1016/0096-3003(90)90027-Z
[18] Lasota, A.; Yorke, J., On the existence of invariant measures for piecewise monotonic transformations, Trans. Am. Math. Sci., 186, 481-8, 1973 · Zbl 0298.28015 · doi:10.1090/S0002-9947-1973-0335758-1
[19] Li, T.; Yorke, J., Ergodic transformations from an interval into itself, Trans. Am. Math. Sci., 235, 183-92, 1978 · Zbl 0371.28017 · doi:10.1090/S0002-9947-1978-0457679-0
[20] Li, Y. Q., Expansions in multiple bases, Acta Math. Hung., 163, 576-600, 2021 · Zbl 1474.11026 · doi:10.1007/s10474-020-01094-7
[21] Morita, T., Random iteration of one-dimensional transformations, Osaka J. Math., 22, 489-518, 1985 · Zbl 0583.60061
[22] Morita, T., Deterministic version lemmas in ergodic theory of random dynamical systems, Hiroshima Math. J., 18, 15-29, 1988 · Zbl 0698.28009 · doi:10.32917/hmj/1206129856
[23] Neunhäuserer, J., Non-uniform expansions of real numbers, Mediterr. J. Math., 18, 70, 2021 · Zbl 1468.11163 · doi:10.1007/s00009-021-01723-7
[24] Parry, W., On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung., 11, 401-16, 1960 · Zbl 0099.28103 · doi:10.1007/BF02020954
[25] Parry, W., Representations for real numbers, Acta Math. Acad. Sci. Hung., 15, 95-105, 1964 · Zbl 0136.35104 · doi:10.1007/BF01897025
[26] Pelikan, S., Invariant densities for random maps of the interval, Trans. Am. Math. Soc., 281, 813-25, 1984 · Zbl 0532.58013 · doi:10.1090/S0002-9947-1984-0722776-1
[27] Rényi, A., Representations for real numbers and their ergodic properties, Acta. Math. Acad. Sci. Hung., 8, 477-93, 1957 · Zbl 0079.08901 · doi:10.1007/BF02020331
[28] Sedro, J.; Rugh, H., Regularity of characteristic exponents and linear response for transfer operator cocycles, Commun. Math. Phys., 383, 1243-89, 2021 · Zbl 1465.37031 · doi:10.1007/s00220-021-04019-9
[29] Suzuki, S., Invariant density functions of random β-transformations, Ergod. Theory Dyn. Syst., 39, 1099-120, 2019 · Zbl 1432.37008 · doi:10.1017/etds.2017.64
[30] Tanaka, S.; Ito, S., Random iteration of unimodal linear transformations, Tokyo J. Math., 5, 463-78, 1982 · Zbl 0528.60065 · doi:10.3836/tjm/1270214906
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.