×

The Aharonov Casher phase of a bipartite entanglement pair traversing a quantum square ring. (English) Zbl 07866338

Summary: We propose in this article a quantum square ring that conveniently generates, annihilates and distills the Aharonov Casher phase with the aid of entanglement. The non-abelian phase is carried by a pair of spin-entangled particles traversing the square ring. At maximal entanglement, dynamic phases are eliminated from the ring and geometric phases are generated in discrete values. By contrast, at partial to no entanglement, both geometric and dynamic phases take on discrete or locally continuous values depending only on the wavelength and the ring size. We have shown that entanglement in a non-abelian system could greatly simplify future experimental efforts revolving around the studies of geometric phases.
{© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft}

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
83-XX Relativity and gravitational theory

References:

[1] Aharonov, Y.; Bohm, D., Phys. Rev., 115, 485 (1959) · Zbl 0099.43102 · doi:10.1103/PhysRev.115.485
[2] Aharonov, Y.; Casher, A., Phys. Rev. Lett., 53, 319 (1984) · doi:10.1103/PhysRevLett.53.319
[3] Pancharatnam, S., Proc. Indian Acad. Sci. A, 44, 247 (1956) · doi:10.1007/BF03046050
[4] Berry, M. V., Proc. R. Soc. A, 392, 45 (1984) · Zbl 1113.81306 · doi:10.1098/rspa.1984.0023
[5] Cohen, E.; Larocque, H.; Bouchard, F.; Nejadsattari, F.; Gefen, Y.; Karimi, E., Nat. Rev. Phys., 1, 437 (2019) · doi:10.1038/s42254-019-0071-1
[6] Nitta, J.; Meijer, F. E.; Takayanagi, H., Appl. Phys. Lett., 75, 695 (1999) · doi:10.1063/1.124485
[7] Molna’r, B.; Peeters, F. M., Phys. Rev. B, 69 (2004) · doi:10.1103/PhysRevB.69.155335
[8] Frustaglia, D.; Richter, K., Phys. Rev. B, 69 (2004) · doi:10.1103/PhysRevB.69.235310
[9] Jalil, M. B A.; Tan, S. G., J. Appl. Phys., 105, 07C709 (2009) · doi:10.1063/1.3075991
[10] Xing, M. J.; Jalil, M. B A.; Tan, S. G.; Jiang, Y., IEEE Trans. Magn., 46, 1471 (2010) · doi:10.1109/TMAG.2010.2045479
[11] Chen, J.; Jalil, M. B A.; Tan, S. G., J. Appl. Phys., 113, 17C506 (2013) · doi:10.1063/1.4799619
[12] Nitta, J.; Bergsten, T.; Kunihashi, Y.; Kohda, M., J. Appl. Phys., 105 (2009) · doi:10.1063/1.3117232
[13] Nagasawa, F.; Frustaglia, D.; Saarikoski, H.; Richter, K.; Nitta, J., Nat. Commun., 4, 2526 (2013) · doi:10.1038/ncomms3526
[14] Hatano, N.; Shirasaki, R.; Nakamura, H., Phys. Rev. A, 75 (2007) · doi:10.1103/PhysRevA.75.032107
[15] Chen, J.; Jalil, M. B A.; Tan, S. G., J. Appl. Phys., 109, 07C722 (2011) · doi:10.1063/1.3560045
[16] Chen, S. H.; Chang, C. R., Phys. Rev. B, 77 (2008) · doi:10.1103/PhysRevB.77.045324
[17] Ho, C. S.; Jalil, M. B A.; Tan, S. G., Eur. Phys. Lett., 108 (2014) · doi:10.1209/0295-5075/108/27012
[18] Bliokh, K. Y.; Bliokh, Y. P., Ann. Phys., 319, 13 (2005) · Zbl 1078.81030 · doi:10.1016/j.aop.2005.03.001
[19] Shen, S. Q., Phys. Rev. Lett., 95 (2005) · doi:10.1103/PhysRevLett.95.187203
[20] Tan, S. G.; Jalil, M. B A.; Liu, X. J.; Fujita, T., Phys. Rev. B, 78 (2008) · doi:10.1103/PhysRevB.78.245321
[21] Tan, S. G.; Chen, S-H; Cong Son, H.; Huang, C-C; Jalil, M. B A.; Chang, C. R.; Murakami, S., Phys. Rep., 882, 1-36 (2020) · Zbl 1476.81082 · doi:10.1016/j.physrep.2020.08.002
[22] Vasko, F T1979Pis’ma Zh. Eksp. Teor. Fiz.30574; Vasko, F T1979JETP Lett.30541
[23] Bychkov, Y ARashba, E I1984Pis’ma Zh. Eksp. Teor. Fiz.3966; Bychkov, Y ARashba, E I1984JETP Lett.3978
[24] Rashba, E. I., Sov. Phys. Solid State, 2, 1109-22 (1960)
[25] D’yakanov, M. I.; Perel’, V. I., JETP Lett., 13, 467 (1971)
[26] Datta, S.; Das, B., Appl. Phys. Lett., 56, 665 (1990) · doi:10.1063/1.102730
[27] Tan, S. G.; Jalil, M. B A., Introduction to the Physics of Nanoelectronics (2012), Cambridge: Elvesier, Woodhead Publishing, Cambridge
[28] Nitta, J.; Akazaki, T.; Takayanagi, H.; Enoki, T., Phys. Rev. Lett., 78, 1335 (1997) · doi:10.1103/PhysRevLett.78.1335
[29] Bruno, P.; Dugaev, V. K.; Taillefumier, M., Phys. Rev. Lett., 93 (2004) · doi:10.1103/PhysRevLett.93.096806
[30] Fujita, T.; Jalil, M. B A.; Tan, S. G.; Murakami, S., J. Appl. Phys., 110 (2011) · doi:10.1063/1.3665219
[31] Tan, S. G.; Jalil, M. B A., Mod. Phys. Lett. A, 31 (2016) · Zbl 1333.81274 · doi:10.1142/S0217732316300032
[32] Anandan, J., Phys. Lett. A, 133, 171 (1988) · doi:10.1016/0375-9601(88)91010-9
[33] Sjoqvist, E., Int. J. Quantum Chem., 115, 1311-26 (2015) · doi:10.1002/qua.24941
[34] Sjoqvist, E., Phys. Rev. A, 62 (2000) · doi:10.1103/PhysRevA.62.022109
[35] Saraga, D. S.; Loss, D., Phys. Rev. Lett., 90 (2003) · doi:10.1103/PhysRevLett.90.166803
[36] Hofstetter, L.; Csonka, S.; Nyg˚ard, J.; Schonenberger, C., Nature, 461, 960 (2009) · doi:10.1038/nature08432
[37] Brange, F.; Prech, K.; Flindt, C., Phys. Rev. Lett., 127 (2021) · doi:10.1103/PhysRevLett.127.237701
[38] Qu, F., Phys. Rev. Lett, 107 (2011) · doi:10.1103/PhysRevLett.107.016802
[39] Strom, A.; Johannesson, H.; Recher, P., Phys. Rev. B, 91 (2015) · doi:10.1103/PhysRevB.91.245406
[40] Dajka, J.; Vourdas, A.; Zhang, S.; Zipper, E., J. Phys.: Condens. Matter, 18, 1367 (2006) · doi:10.1088/0953-8984/18/4/021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.