×

Search for a leptoquark and vector-like lepton in a muon collider. (English) Zbl 07866032

Summary: The proposal for a high-energy muon collider offers many opportunities in the search for physics beyond the Standard Model (BSM). The collider by construction is likely to be more sensitive to the muon-philic models, primarily motivated by the BSM explanation of muon \((g - 2)\) excess and quark flavor anomalies. In this work, we explore the potential of the proposed muon collider in the context of such models and focus on one such model that extends the Standard Model (SM) with a leptoquark, a vector-like lepton, and a real scalar. In this model, we propose searches for TeV scale leptoquarks in \(2\mu + 2b + \not\!\! E_T\) channel. Notably, the leptoquark can be produced singly at the muon collider with a large cross-section. We have shown that a significant signal in this channel can be detected at a 3 TeV muon collider even with an integrated luminosity as low as \(\sim 10\,\mathrm{fb}^{-1}\).

References:

[1] Chen, P.; Barklow, T. L.; Peskin, M. E., Hadron production in gamma gamma collisions as a background for e+ e- linear colliders, Phys. Rev. D, 49, 3209, 1994
[2] Barklow, T., Beam delivery and beamstrahlung considerations for ultra-high energy linear colliders
[3] Han, T.; Ma, Y.; Xie, K., High energy leptonic collisions and electroweak parton distribution functions, Phys. Rev. D, 103, Article L031301 pp., 2021
[4] Han, T.; Ma, Y.; Xie, K., Quark and gluon contents of a lepton at high energies, J. High Energy Phys., 02, Article 154 pp., 2022
[5] Garosi, F.; Marzocca, D.; Trifinopoulos, S., LePDF: standard model PDFs for high-energy lepton colliders, J. High Energy Phys., 09, Article 107 pp., 2023
[6] Frixione, S.; Stagnitto, G., The muon parton distribution functions, J. High Energy Phys., 12, Article 170 pp., 2023
[7] Buarque Franzosi, D., Vector boson scattering processes: status and prospects, Rev. Phys., 8, Article 100071 pp., 2022
[8] Costantini, A.; De Lillo, F.; Maltoni, F.; Mantani, L.; Mattelaer, O.; Ruiz, R., Vector boson fusion at multi-TeV muon colliders, J. High Energy Phys., 09, Article 080 pp., 2020
[9] Al Ali, H., The muon Smasher’s guide, Rep. Prog. Phys., 85, Article 084201 pp., 2022
[10] Accettura, C., Towards a Muon collider, Eur. Phys. J. C, 83, 864, 2023
[11] The physics case of a 3 TeV muon collider stage
[13] Schulte, D.; Delahaye, J.-P.; Diemoz, M.; Long, K.; Mansoulié, B.; Patrone, N., Muon Collider. A path to the future?, PoS, EPS-HEP2019, Article 004 pp., 2020
[14] Delahaye, J. P.; Diemoz, M.; Long, K.; Mansoulié, B.; Pastrone, N.; Rivkin, L., Muon Colliders
[15] The Muon Collider, (IPAC2022, 2022, JACoW), 821
[16] Lu, C.-T.; Luo, X.; Wei, X., Exploring muonphilic ALPs at muon colliders, Chin. Phys. C, 47, Article 103102 pp., 2023
[17] Han, T.; Kilian, W.; Kreher, N.; Ma, Y.; Reuter, J.; Striegl, T., Precision test of the muon-Higgs coupling at a high-energy muon collider, J. High Energy Phys., 12, Article 162 pp., 2021
[18] Dermisek, R.; Hermanek, K.; McGinnis, N., Di-Higgs and tri-Higgs boson signals of muon g-2 at a muon collider, Phys. Rev. D, 104, Article L091301 pp., 2021
[19] Celada, E.; Han, T.; Kilian, W.; Kreher, N.; Ma, Y.; Maltoni, F., Probing Higgs-muon interactions at a multi-TeV muon collider
[20] Dermisek, R.; Hermanek, K.; Lee, T.; McGinnis, N.; Yoon, S., Multi Higgs boson signals of a modified muon Yukawa coupling at a muon collider
[21] Aime, C., Muon Collider Physics Summary
[22] Black, K. M., Muon collider forum report
[23] Chakrabarty, N.; Han, T.; Liu, Z.; Mukhopadhyaya, B., Radiative return for heavy Higgs boson at a muon collider, Phys. Rev. D, 91, Article 015008 pp., 2015
[24] Di Luzio, L.; Gröber, R.; Panico, G., Probing new electroweak states via precision measurements at the LHC and future colliders, J. High Energy Phys., 01, Article 011 pp., 2019
[25] Forslund, M.; Meade, P., Precision Higgs width and couplings with a high energy muon collider
[26] Han, T.; Liu, D.; Low, I.; Wang, X., Electroweak couplings of the Higgs boson at a multi-TeV muon collider, Phys. Rev. D, 103, Article 013002 pp., 2021
[27] Chiesa, M.; Maltoni, F.; Mantani, L.; Mele, B.; Piccinini, F.; Zhao, X., Measuring the quartic Higgs self-coupling at a multi-TeV muon collider, J. High Energy Phys., 09, Article 098 pp., 2020
[28] Bandyopadhyay, P.; Costantini, A., Obscure Higgs boson at colliders, Phys. Rev. D, 103, Article 015025 pp., 2021
[29] Forslund, M.; Meade, P., High precision Higgs from high energy muon colliders, J. High Energy Phys., 08, Article 185 pp., 2022
[30] Reuter, J.; Han, T.; Kilian, W.; Kreher, N.; Ma, Y.; Striegl, T., Precision test of the muon-Higgs coupling at a high-energy muon collider, PoS, ICHEP2022, 1239, 2022
[31] Casarsa, M.; Fabbrichesi, M.; Gabrielli, E., Monochromatic single photon events at the muon collider, Phys. Rev. D, 105, Article 075008 pp., 2022
[32] Yin, W.; Yamaguchi, M., Muon g-2 at a multi-TeV muon collider, Phys. Rev. D, 106, Article 033007 pp., 2022
[33] Han, T.; Li, S.; Su, S.; Su, W.; Wu, Y., Heavy Higgs bosons in 2HDM at a muon collider, Phys. Rev. D, 104, Article 055029 pp., 2021
[34] Huang, G.-y.; Queiroz, F. S.; Rodejohann, W., Gauged \(L_\mu - L_\tau\) at a muon collider, Phys. Rev. D, 103, Article 095005 pp., 2021
[35] Huang, G.-y.; Jana, S.; Queiroz, F. S.; Rodejohann, W., Probing the RK(*) anomaly at a muon collider, Phys. Rev. D, 105, Article 015013 pp., 2022
[36] Chakrabarty, N.; Chakraborty, I.; Ghosh, D. K.; Saha, G., Muon \(g - 2\) and W-mass in a framework of colored scalars: an LHC perspective
[37] Ouazghour, B. A.; Arhrib, A.; Cheung, K.; Ghourmin, E.-s.; Rahili, L., Charged Higgs production at the Muon Collider in the 2HDM
[38] Belfkir, M.; Chowdhury, T. A.; Nasri, S., Doubly-charged scalars of the Minimal Left-Right Symmetric Model at Muon Colliders
[39] Sun, J.; Huang, F.; He, X.-G., Muon collider signatures for a \(Z^\prime\) with a maximal \(\mu - \tau\) coupling in \(U ( 1 )_{L_\mu - L_\tau}\)
[40] Maharathy, S. P.; Mitra, M., Type-II see-saw at \(\mu^+ \mu^-\) collider
[41] Guo, Q.; Gao, L.; Mao, Y.; Li, Q., Search for vector-like leptons at a Muon Collider
[42] Jueid, A.; Nasri, S., Lepton portal dark matter at muon colliders: total rates and generic features for phenomenologically viable scenarios, Phys. Rev. D, 107, Article 115027 pp., 2023
[43] Chowdhury, T. A.; Jueid, A.; Nasri, S.; Saad, S., Probing Zee-Babu states at Muon Colliders
[44] Krnjaic, G.; Marques-Tavares, G.; Redigolo, D.; Tobioka, K., Probing muonphilic force carriers and dark matter at kaon factories, Phys. Rev. Lett., 124, Article 041802 pp., 2020
[45] Jana, S.; Klett, S., Muonic force and neutrino non-standard interactions at muon colliders
[46] Measurement of the positive muon anomalous magnetic moment to 0.20 ppm
[47] New results from the Muon g-2 experiment, (2023 European Physical Society Conference on High Energy Physics, vol. 11, 2023)
[48] Aoyama, T., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rep., 887, 1, 2020
[49] Kurz, A.; Liu, T.; Marquard, P.; Steinhauser, M., Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B, 734, 144, 2014
[50] Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z., Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon \(g - 2\) and \(\alpha( m_Z^2)\) using newest hadronic cross-section data, Eur. Phys. J. C, 77, 827, 2017
[51] Keshavarzi, A.; Nomura, D.; Teubner, T., Muon \(g - 2\) and \(\alpha( M_Z^2)\): a new data-based analysis, Phys. Rev. D, 97, Article 114025 pp., 2018
[52] Colangelo, G.; Hoferichter, M.; Stoffer, P., Two-pion contribution to hadronic vacuum polarization, J. High Energy Phys., 02, Article 006 pp., 2019
[53] Hoferichter, M.; Hoid, B.-L.; Kubis, B., Three-pion contribution to hadronic vacuum polarization, J. High Energy Phys., 08, Article 137 pp., 2019
[54] Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z., A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \(\boldsymbol{\alpha}( \mathbf{m}_{\mathbf{Z}}^2)\), Eur. Phys. J. C, 80, 241, 2020
[55] Keshavarzi, A.; Nomura, D.; Teubner, T., The \(g - 2\) of charged leptons, \( \alpha( M_Z^2)\) and the hyperfine splitting of muonium, Phys. Rev. D, 101, Article 014029 pp., 2020
[56] Blum, T.; Christ, N.; Hayakawa, M.; Izubuchi, T.; Jin, L.; Jung, C., The hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett., 124, Article 132002 pp., 2020
[57] Borsanyi, S., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature, 593, 51, 2021
[58] Cè, M., Window observable for the hadronic vacuum polarization contribution to the muon g-2 from lattice QCD, Phys. Rev. D, 106, Article 114502 pp., 2022
[59] Extended Twisted Mass Collaboration, Lattice Calculation of the Short and Intermediate Time-Distance Hadronic Vacuum Polarization Contributions to the Muon Magnetic Moment Using Twisted-Mass Fermions. Extended Twisted Mass Collaboration, Lattice Calculation of the Short and Intermediate Time-Distance Hadronic Vacuum Polarization Contributions to the Muon Magnetic Moment Using Twisted-Mass Fermions, Phys. Rev. D, 107, Article 074506 pp., 2023
[60] Chao, E.-H.; Meyer, H. B.; Parrino, J., Coordinate-space calculation of the window observable for the hadronic vacuum polarization contribution to (g-2)μ, Phys. Rev. D, 107, Article 054505 pp., 2023
[61] Measurement of the \(e^+ e^- \to \pi^+ \pi^-\) cross section from threshold to 1.2 GeV with the CMD-3 detector
[62] Arnan, P.; Hofer, L.; Mescia, F.; Crivellin, A., Loop effects of heavy new scalars and fermions in \(b \to s \mu^+ \mu^-\), J. High Energy Phys., 04, Article 043 pp., 2017
[63] Dhargyal, L.; Rai, S. K., Implications of a vector-like lepton doublet and scalar Leptoquark on \(R( D^{( \ast )})\)
[64] Ghosh, N.; Rai, S. K.; Samui, T., Collider signatures of a scalar leptoquark and vectorlike lepton in light of muon anomaly, Phys. Rev. D, 107, Article 035028 pp., 2023
[65] Cheung, K.; Nguyen, T. T.Q.; Ouseph, C. J., Leptoquark search at the Forward Physics Facility, Phys. Rev. D, 108, Article 036014 pp., 2023
[66] Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2014
[67] Misiak, M., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett., 114, Article 221801 pp., 2015
[68] \( B_{( s )}^0\)-mixing matrix elements from lattice QCD for the Standard Model and beyond, Phys. Rev. D, 93, Article 113016 pp., 2016
[69] Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021, Phys. Rev. D, 107, Article 052008 pp., 2023
[70] Measurement of lepton universality parameters in \(B^+ \to K^+ \ell^+ \ell^-\) and \(B^0 \to K^{\ast 0} \ell^+ \ell^-\) decays, Phys. Rev. D, 108, Article 032002 pp., 2023
[71] He, H.-J.; Tait, T. M.P.; Yuan, C. P., New top flavor models with seesaw mechanism, Phys. Rev. D, 62, Article 011702 pp., 2000
[72] He, H.-J.; Hill, C. T.; Tait, T. M.P., Top quark seesaw, vacuum structure and electroweak precision constraints, Phys. Rev. D, 65, Article 055006 pp., 2002
[73] Wang, X.-F.; Du, C.; He, H.-J., LHC Higgs signatures from topflavor seesaw mechanism, Phys. Lett. B, 723, 314, 2013 · Zbl 1311.81245
[74] He, H.-J.; Xianyu, Z.-Z., Extending Higgs inflation with TeV scale new physics, J. Cosmol. Astropart. Phys., 10, Article 019 pp., 2014
[75] Asadi, P.; Capdevilla, R.; Cesarotti, C.; Homiller, S., Searching for leptoquarks at future muon colliders, J. High Energy Phys., 10, Article 182 pp., 2021
[76] Bandyopadhyay, P.; Karan, A.; Mandal, R.; Parashar, S., Distinguishing signatures of scalar leptoquarks at hadron and muon colliders, Eur. Phys. J. C, 82, 916, 2022
[77] Qian, S.; Li, C.; Li, Q.; Meng, F.; Xiao, J.; Yang, T., Searching for heavy leptoquarks at a muon collider, J. High Energy Phys., 12, Article 047 pp., 2021
[78] Desai, N.; Sengupta, A., Status of leptoquark models after LHC Run-2 and discovery prospects at future colliders
[79] Morais, A. P.; Onofre, A.; Freitas, F. F.; Gonçalves, J.a.; Pasechnik, R.; Santos, R., Deep learning searches for vector-like leptons at the LHC and electron/muon colliders, Eur. Phys. J. C, 83, 232, 2023
[80] A portrait of the Higgs boson by the CMS experiment ten years after the discovery, Nature, 607, 60, 2022
[81] Di Luzio, L.; Kirk, M.; Lenz, A., Updated \(B_s\)-mixing constraints on new physics models for \(b \to s \ell^+ \ell^-\) anomalies, Phys. Rev. D, 97, Article 095035 pp., 2018
[82] Staub, F., SARAH
[83] Porod, W.; Staub, F., SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun., 183, 2458, 2012
[84] Staub, F.; Ohl, T.; Porod, W.; Speckner, C., A tool box for implementing supersymmetric models, Comput. Phys. Commun., 183, 2165, 2012
[85] Review of particle physics, PTEP, 2022, Article 083C01 pp., 2022
[86] Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M., Complete tenth-order QED contribution to the muon \(g - 2\), Phys. Rev. Lett., 109, Article 111808 pp., 2012
[87] Aoyama, T.; Kinoshita, T.; Nio, M., Theory of the anomalous magnetic moment of the electron, Atoms, 7, 28, 2019
[88] Czarnecki, A.; Marciano, W. J.; Vainshtein, A., Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D, 67, Article 073006 pp., 2003
[89] Gnendiger, C.; Stöckinger, D.; Stöckinger-Kim, H., The electroweak contributions to \(( g - 2 )_\mu\) after the Higgs boson mass measurement, Phys. Rev. D, 88, Article 053005 pp., 2013
[90] Melnikov, K.; Vainshtein, A., Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D, 70, Article 113006 pp., 2004
[91] Masjuan, P.; Sánchez-Puertas, P., Pseudoscalar-pole contribution to the \(( g_\mu - 2)\): a rational approach, Phys. Rev. D, 95, Article 054026 pp., 2017
[92] Colangelo, G.; Hoferichter, M.; Procura, M.; Stoffer, P., Dispersion relation for hadronic light-by-light scattering: two-pion contributions, J. High Energy Phys., 04, Article 161 pp., 2017
[93] Hoferichter, M.; Hoid, B.-L.; Kubis, B.; Leupold, S.; Schneider, S. P., Dispersion relation for hadronic light-by-light scattering: pion pole, J. High Energy Phys., 10, Article 141 pp., 2018
[94] Gérardin, A.; Meyer, H. B.; Nyffeler, A., Lattice calculation of the pion transition form factor with \(N_f = 2 + 1\) Wilson quarks, Phys. Rev. D, 100, Article 034520 pp., 2019
[95] Bijnens, J.; Hermansson-Truedsson, N.; Rodríguez-Sánchez, A., Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B, 798, Article 134994 pp., 2019
[96] Colangelo, G.; Hagelstein, F.; Hoferichter, M.; Laub, L.; Stoffer, P., Longitudinal short-distance constraints for the hadronic light-by-light contribution to \(( g - 2 )_\mu\) with large-\( N_c\) Regge models, J. High Energy Phys., 03, Article 101 pp., 2020
[97] Colangelo, G.; Hoferichter, M.; Nyffeler, A.; Passera, M.; Stoffer, P., Remarks on higher-order hadronic corrections to the muon \(g - 2\), Phys. Lett. B, 735, 90, 2014
[98] Muon (g-2) technical design report
[99] Measurement of the anomalous precession frequency of the muon in the Fermilab Muon \(g - 2\) experiment, Phys. Rev. D, 103, Article 072002 pp., 2021
[100] Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett., 126, Article 141801 pp., 2021
[101] Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D, 73, Article 072003 pp., 2006
[102] Search for the lepton flavour violating decay \(\mu^+ \to \operatorname{e}^+ \gamma\) with the full dataset of the MEG experiment, Eur. Phys. J. C, 76, 434, 2016
[103] Searches for lepton flavor violation in the decays \(\tau^\pm \to e^\pm \gamma\) and \(\tau^\pm \to \mu^\pm \gamma \), Phys. Rev. Lett., 104, Article 021802 pp., 2010
[104] Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6, 2020
[105] Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett., 121, Article 111302 pp., 2018
[106] Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope, Phys. Rev. D, 89, Article 042001 pp., 2014
[107] Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett., 115, Article 231301 pp., 2015
[108] Searching for dark matter annihilation in recently discovered Milky Way satellites with Fermi-LAT, Astrophys. J., 834, 110, 2017
[109] Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope, J. Cosmol. Astropart. Phys., 06, Article 035 pp., 2011
[110] Aleksić, J., Optimized dark matter searches in deep observations of Segue 1 with MAGIC, J. Cosmol. Astropart. Phys., 02, Article 008 pp., 2014
[111] Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies, J. Cosmol. Astropart. Phys., 02, Article 039 pp., 2016
[112] Belyaev, A.; Christensen, N. D.; Pukhov, A., CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun., 184, 1729, 2013 · Zbl 1286.81009
[113] Bélanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., micrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun., 192, 322, 2015
[114] Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys., 07, Article 079 pp., 2014 · Zbl 1402.81011
[115] Sjöstrand, T.; Ask, S.; Christiansen, J. R.; Corke, R.; Desai, N.; Ilten, P., An introduction to PYTHIA 8.2, Comput. Phys. Commun., 191, 159, 2015 · Zbl 1344.81029
[116] DELPHES 3, a modular framework for fast simulation of a generic collider experiment, J. High Energy Phys., 02, Article 057 pp., 2014
[117] CERN collaboration, Talk: Delphes card for muon collider.
[118] Hoeche, S.; Krauss, F.; Lavesson, N.; Lonnblad, L.; Mangano, M.; Schalicke, A., Matching parton showers and matrix elements, (HERA and the LHC: A Workshop on the Implications of HERA for LHC Physics: CERN - DESY Workshop 2004/2005. HERA and the LHC: A Workshop on the Implications of HERA for LHC Physics: CERN - DESY Workshop 2004/2005, Midterm Meeting, CERN, 11-13 October 2004; Final Meeting, DESY, 17-21 January 2005, 2005), 288-289
[119] Search for scalar leptoquarks in the acoplanar jet topology in \(p \overline{p}\) collisions at \(\sqrt{ s} = 1.96\)-TeV, Phys. Lett. B, 640, 230, 2006
[120] Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in \(\sqrt{ s} = 13\) TeV pp collisions with the ATLAS detector, J. High Energy Phys., 10, Article 112 pp., 2020
[121] Search for pair production of third-generation leptoquarks decaying into a bottom quark and a τ-lepton with the ATLAS detector
[122] Search for excited τ-leptons and leptoquarks in the final state with τ-leptons and jets in pp collisions at \(\sqrt{ s} = 13\) TeV with the ATLAS detector, J. High Energy Phys., 06, Article 199 pp., 2023
[123] Search for a third-generation leptoquark coupled to a τ lepton and a b quark through single, pair, and nonresonant production in proton-proton collisions at \(\sqrt{ s} = 13\) TeV
[124] ATLAS collaboration, Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in \(\sqrt{ s} = 13\) TeV pp collisions with the ATLAS detector, ATLAS-CONF-2016-050.
[125] ATLAS collaboration, Search for squarks and gluinos in events with an isolated lepton, jets and missing transverse momentum at \(\sqrt{ s} = 13\) TeV with the ATLAS detector, ATLAS-CONF-2016-054.
[126] ATLAS collaboration, Search for direct top squark pair production and dark matter production in final states with two leptons in \(\sqrt{ s} = 13\) TeV pp collisions using 13.3 fb^−1 of ATLAS data, ATLAS-CONF-2016-076.
[127] Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at \(\sqrt{ s} =13\) TeV with the ATLAS detector, J. High Energy Phys., 12, Article 085 pp., 2017
[128] Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb^−1 of \(\sqrt{ s} = 13\) TeV pp collision data with the ATLAS detector, Phys. Rev. D, 97, Article 112001 pp., 2018
[129] Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at \(\sqrt{ s} = 13\) TeV with the ATLAS detector, Phys. Rev. D, 97, Article 052010 pp., 2018
[130] Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at \(\sqrt{ s} = 13\) TeV, Phys. Lett. B, 782, 440, 2018
[131] Search for electroweak production of supersymmetric particles in final states with two or three leptons at \(\sqrt{ s} = 13\) TeV with the ATLAS detector, Eur. Phys. J. C, 78, 995, 2018
[132] Drees, M.; Dreiner, H.; Schmeier, D.; Tattersall, J.; Kim, J. S., CheckMATE: confronting your favourite new physics model with LHC data, Comput. Phys. Commun., 187, 227, 2015
[133] Cowan, G.; Cranmer, K.; Gross, E.; Vitells, O., Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C, 71, 1554, 2011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.