×

Study and optimization of \(N\)-particle numerical statistical algorithm for solving the Boltzmann equation. (English) Zbl 07866005

Summary: The main goal of this work is to check the hypothesis that the well-known \(N\)-particle statistical algorithm yields a solution estimate for the nonlinear Boltzmann equation with an \(O(1/N)\) error. For this purpose, practically important optimal relations between \(N\) and the number \(n\) of sample estimate values are determined. Numerical results for a problem with a known solution confirm that the formulated estimates and conclusions are satisfactory.

MSC:

65-XX Numerical analysis
76-XX Fluid mechanics
Full Text: DOI

References:

[1] Kac, M., Probability and Related Topics in Physical Sciences, 1959, London: Interscience, London · Zbl 0087.33003
[2] Mikhailov, G. A., Weighted Monte Carlo Methods, 2000, Novosibirsk: Sib. Otd. Ross. Akad. Nauk, Novosibirsk
[3] Mikhailov, G. A.; Rogasinsky, S. V., Weighted Monte Carlo methods for approximate solution of a nonlinear Boltzmann equation, Sib. Math. J., 43, 496-503, 2002 · Zbl 1020.65006 · doi:10.1023/A:1015467719806
[4] Ivanov, M. S.; Rogasinsky, S. V., Analysis of numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics, Sov. J. Numer. Anal. Math. Model., 3, 453-465, 1988 · Zbl 0825.65102
[5] Denisik, S. A.; Lebedev, S. N.; Malama, Yu. G., A check of a non-linear scheme for the Monte Carlo method, USSR Comput. Math. Math. Phys., 11, 314-316, 1971 · Zbl 0267.76058 · doi:10.1016/0041-5553(71)90151-0
[6] Bird, G. A., Molecular Gas Dynamics, 1976, Oxford: Clarendon, Oxford
[7] Korolev, A. E.; Yanitskii, V. E., Direct statistical simulation of collisional relaxation in mixtures of gases with a large difference in concentrations, USSR Comput. Math. Math. Phys., 23, 102-105, 1985 · Zbl 0552.76064 · doi:10.1016/S0041-5553(83)80107-4
[8] Ivanov, M. S.; Korotchenko, M. A.; Mikhailov, G. A.; Rogasinsky, S. V., Global weighted Monte Carlo for the nonlinear Boltzmann equation, Comput. Math. Math. Phys., 45, 1792-1801, 2005 · Zbl 1089.76053
[9] Lotova, G. Z.; Mikhailov, G. A., Investigation of overexponential growth of mean particle flux with multiplication in random medium, Numer. Anal. Appl., 16, 337-347, 2023 · doi:10.1134/S1995423923040055
[10] Bobylev, A. V., Exact solutions to the Boltzmann equation, Dokl. Akad. Nauk SSSR, 225, 1296-1299, 1975
[11] Bobylev, A. V., Exact solutions to the nonlinear Boltzmann equation and the relaxation theory of Maxwellian gas, Teor. Mat. Fiz., 60, 280-310, 1984 · Zbl 0565.76074 · doi:10.1007/BF01018983
[12] Mikhailov, G. A.; Voitishek, A. V., Direct Numerical Simulation: Monte Carlo Methods, 2006, Moscow: Akademiya, Moscow
[13] Lotova, G. Z.; Lukinov, V. L.; Marchenko, M. A.; Mikhailov, G. A.; Smirnov, D. D., Numerical-statistical study of the prognostic efficiency of the SEIR model, Russ. J. Numer. Anal. Math. Model., 36, 337-345, 2021 · Zbl 1489.92164 · doi:10.1515/rnam-2021-0027
[14] Pertsev, N. V.; Loginov, K. K.; Topchii, V. A., Analysis of a stage-dependent epidemic model based on a non-Markov random process, J. Appl. Ind. Math., 14, 566-580, 2020 · Zbl 1505.92221 · doi:10.1134/S1990478920030151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.