×

Eigenvalue topology optimization via efficient multilevel solution of the frequency response. (English) Zbl 07865076

Summary: The article presents an efficient solution method for structural topology optimization aimed at maximizing the fundamental frequency of vibration. Nowadays, this is still a challenging problem mainly because of the high computational cost required by spectral analyses. The proposed method relies on replacing the eigenvalue problem with a frequency response one, which can be tuned and efficiently solved by a multilevel procedure. Connections of the method with multigrid eigenvalue solvers are discussed in details. Several applications demonstrating more than 90% savings of the computational time are presented as well.
{Copyright © 2018 John Wiley & Sons, Ltd.}

MSC:

74Pxx Optimization problems in solid mechanics
74Hxx Dynamical problems in solid mechanics
65Fxx Numerical linear algebra

Software:

top88.m
Full Text: DOI

References:

[1] BendsøeMP, SigmundO. Topology Optimization: Theory, Methods and Applications. Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 2004. · Zbl 1059.74001
[2] DíazAR, KikuchiN. Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng. 1992;35(7):1487‐1502. · Zbl 0767.73046
[3] MaZ‐D, KikuchiN, ChengH‐S. Topological design for vibrating structures. Comput Methods Appl Mech Eng. 1995;121(1‐4):259‐280. · Zbl 0849.73045
[4] GrandhiR. Structural optimization with frequency constraints-a review. AIAA J. 1993;31(12):2296‐2303. · Zbl 0836.73050
[5] PedersenNL. Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim. 2000;20(1):2‐11.
[6] CloughR, PenzienJ. Dynamics of Structures. New York, NY: McGraw‐Hill; 1975. · Zbl 0357.73068
[7] PreumontA. Vibration Control of Active Structures: An Introduction. 1st ed. Dordrecht, The Netherlands: Springer Science+Business Media Dordrecht; 1997. Solid Mechanics and Its Applications; vol 50. · Zbl 0910.73001
[8] SigmundO, MauteK. Topology optimization approaches. Struct Multidiscip Optim. 2013;48(6):1031‐1055.
[9] WittrickW. On eigenvalues of matrices dependent of a parameter. Numer Math. 1962;6:377‐387. · Zbl 0133.26201
[10] HaugEJ, RousseletB. Design sensitivity analysis in structural mechanics. II. Eigenvalue variations. J Struct Mech. 1980;8(2):161‐186.
[11] HaugEJ, ChoiKK. Systematic occurrence of repeated eigenvalues in structural optimization. J Optim Theory Appl. 1982;38(2):251‐274. · Zbl 0471.49022
[12] AchtzigerW, KočvaraM. On the maximization of the fundamental eigenvalue in topology optimization. Struct Multidiscip Optim. 2007;34(3):181‐195. · Zbl 1273.74408
[13] SeyranianAP, LundE, OlhoffN. Multiple eigenvalues in structural optimization problems. Struct Optim. 1994;8(4):207‐227.
[14] JensenJS, PedersenNL. On maximal eigenfrequency separation in two‐material structures: the 1D and 2D scalar cases. J Sound Vib. 2006;289(4‐5):967‐986.
[15] ChenX, QiH, QiL, TeoK‐L. Smooth convex approximation to the maximum eigenvalue function. J Glob Optim. 2004;30(2):253‐270. · Zbl 1066.90081
[16] GravesenJ, EvgrafovA, NguyenDM. On the sensitivities of multiple eigenvalues. Struct Multidiscip Optim. 2011;44(4):583‐587. · Zbl 1274.15025
[17] ToriiAJ, deFariaJR. Structural optimization considering smallest magnitude eigenvalues: a smooth approximation. J Braz Soc Mech Sci Eng. 2017;39(5):1745‐1754.
[18] OhsakiM, FujisawaK, KatohN, KannoY. Semi‐definite programming for topology optimization of trusses under multiple eigenvalue constraints. Comput Methods Appl Mech Eng. 1999;180(1‐2):203‐217. · Zbl 0943.90060
[19] ZhouP, DuJ, LüZ. Topology optimization of freely vibrating continuum structures based on nonsmooth optimization. Struct Multidiscip Optim. 2017;56(3):603‐618.
[20] AroraJS. Survey of structural reanalysis techniques. J Struct Div. 1976;102(4):783‐802.
[21] KirschU. Reanalysis of Structures: A Unified Approach for Linear, Nonlinear, Static and Dynamic Systems. 1st ed. Solid Mechanics and Its Applications; vol. 151. Dordrecht, The Netherlands: Springer Science+Business Media; 2008. · Zbl 1141.74001
[22] KirschU. A unified reanalysis approach for structural analysis, design, and optimization. Struct Multidiscip Optim. 2003;25(2):67‐85.
[23] KirschU, BogomolniM. Procedures for approximate eigenproblem reanalysis of structures. Int J Numer Methods Eng. 2004;60(12):1969‐1986. · Zbl 1069.74024
[24] KirschU, BogomolniM, SheinmanI. Efficient dynamic reanalysis of structures. Aust J Struct Eng. 2007;133(3):440‐448.
[25] AmirO, BendsøeMP, SigmundO. Approximate reanalysis in topology optimization. Int J Numer Methods Eng. 2009;78(12):1474‐1491. · Zbl 1183.74216
[26] BogomolnyM. Topology optimization for free vibrations using combined approximations. Int J Numer Methods Eng. 2010;82(5):617‐636. · Zbl 1188.74046
[27] AndreassenE, FerrariF, SigmundO, DiazAR. Frequency response as a surrogate eigenvalue problem in topology optimization. Int J Numer Methods Eng. 2017;113(8):1214‐1229. · Zbl 07874750
[28] HackbuschW. Multi‐Grid Methods and Applications. Springer Series in Computational Mathematics. Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 1985. · Zbl 0595.65106
[29] BendsøeMP, SigmundO. Material interpolation schemes in topology optimization. Arch Appl Mech. 1999;69(9‐10):635‐654. · Zbl 0957.74037
[30] JogCS. Topology design of structures subjected to periodic loading. J Sound Vib. 2002;253(3):687‐709.
[31] OlhoffN, DuJ. Generalized incremental frequency method for topological design of continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency. Struct Multidiscip Optim. 2016;54(5):1113‐1141.
[32] QuarteroniA, SaccoR, SaleriF. Numerical Mathematics. Texts in Applied Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2000. · Zbl 0957.65001
[33] AmirO, AageN, LazarovBS. On multigrid‐CG for efficient topology optimization. Struct Multidiscip Optim. 2014;49(5):815‐829.
[34] BriggsWL, HensonVE, McCormickSF. A Multigrid Tutorial. 2nd ed. Springer Series in Computational Mathematics. Philadelphia, PA:Society for Industrial and Applied Mathematics; 2000. · Zbl 0958.65128
[35] ŠebestovàI, VejchodskýT. Two‐sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, Trace, and similar constants. SIAM J Numer Anal. 2014;52(1):308‐329. · Zbl 1287.35050
[36] WangS, deSturlerE, PaulinoGH. Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng. 2007;69(12):2441‐2468. · Zbl 1194.74265
[37] AmirO, StolpeM, SigmundO. Efficient use of iterative solvers in nested topology optimization. Struct Multidiscip Optim. 2010;42(1):55‐72. · Zbl 1274.74308
[38] AmirO, SigmundO. On reducing computational effort in topology optimization: how far can we go?Struct Multidiscip Optim. 2011;44(1):25‐29. · Zbl 1274.74306
[39] WilkinsonJ. The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis. Oxford, UK: Clarendon Press; 1988. · Zbl 0626.65029
[40] IpsenICF. Computing an eigenvector with inverse iteration. SIAM Rev. 1997;39(2):254‐291. · Zbl 0874.65029
[41] GolubGH, YeQ. Inexact inverse iteration for generalized eigenvalue problems. BIT Numer Math. 2000;40(4):671‐684. · Zbl 0984.65032
[42] SmitP, PaardekooperM. The effects of inexact solvers in algorithms for symmetric eigenvalue problems. Linear Algebra Appl. 1999;287(1‐3):337‐357. · Zbl 0943.65048
[43] Berns‐MüllerJ, GrahamIG, SpenceA. Inexact inverse iteration for symmetric matrices. Linear Algebra Appl. 2006;416(2‐3):389‐413. · Zbl 1101.65037
[44] MorganRB, ScottDS. Preconditioning the Lanczos algorithm for sparse symmetric eigenvalue problems. SIAM J Sci Comput. 1993;14(3):585‐593. · Zbl 0791.65022
[45] FreitagMA, SpenceA. Convergence of inexact inverse iteration with application to preconditioned iterative solves. BIT Numer Math. 2007;47(1):27‐44. · Zbl 1121.65038
[46] FreitagMA, SpenceA. A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems. IMA J Numer Anal. 2008;28(3):522‐551. · Zbl 1151.65030
[47] NeymeyrK. A geometric theory for preconditioned inverse iteration I: extrema of the Rayleigh quotient. Linear Algebra Appl. 2001;322(1):61‐85. · Zbl 0976.65034
[48] NeymeyrK. A geometric theory for preconditioned inverse iteration II: convergence estimates. Linear Algebra Appl. 2001;322(1):87‐104. · Zbl 0976.65035
[49] NeymeyrK. Solving mesh eigenproblems with multigrid efficiency. In: Numerical Methods for Scientific Computing. Variational Problems and Applications. 2003.
[50] StewartGW. Simultaneous iteration for computing invariant subspaces of non‐Hermitian matrices. Numer Math. 1976;25(2):123‐136. · Zbl 0328.65025
[51] RobbéM, SadkaneM, SpenceA. Inexact inverse subspace iteration with preconditioning applied to non‐Hermitian eigenvalue problems. SIAM J Matrix Anal Appl. 2009;31(1):92‐113. · Zbl 1269.65036
[52] YeQ, ZhangP. Inexact inverse subspace iteration for generalized eigenvalue problems. Linear Algebra Appl. 2011;434(7):1697‐1715. · Zbl 1215.65069
[53] O’LearyDP. The block conjugate gradient algorithm and related methods. Linear Algebra Appl. 1980;29:293‐322. · Zbl 0426.65011
[54] FengYT, OwenDRJ, PerićD. A block conjugate gradient method applied to linear systems with multiple right‐hand sides. Comput Methods Appl Mech Eng. 1995;127(1‐4):203‐215. · Zbl 0861.73077
[55] BanjaiL, BörmS, SauterS. FEM for elliptic eigenvalue problems: how coarse can the coarsest mesh be chosen? An experimental study. Comput Vis Sci. 2008;11(4‐6):363‐372. · Zbl 1522.65199
[56] SauterS. hp‐finite elements for elliptic eigenvalue problems: error estimates which are explicit with respect to λ, h, and p. SIAM J Numer Anal. 2010;48(1):95‐108. · Zbl 1211.65149
[57] BourdinB. Filters in topology optimization. Int J Numer Methods Eng. 2001;50(9):2143‐2158. · Zbl 0971.74062
[58] BrunsTE, TortorelliDA. Topology optimization of non‐linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng. 2001;190(26‐27):3443‐3459. · Zbl 1014.74057
[59] SvanbergK. The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng. 1987;24(2):359‐373. · Zbl 0602.73091
[60] AndreassenE, ClausenA, SchevenelsM, LazarovBS, SigmundO. Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim. 2011;43(1):1‐16. · Zbl 1274.74310
[61] TcherniakD. Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng. 2002;54(11):1605‐1622. · Zbl 1034.74042
[62] DuJ, OlhoffN. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim. 2007;34(2):91‐110. · Zbl 1273.74398
[63] VillaggioP. Qualitative Methods in Elasticity. Mechanics of Continua. Springer Netherlands; 1977. · Zbl 0374.73001
[64] VillanuevaCH, MauteK. Density and level set‐XFEM schemes for topology optimization of 3‐D structures. Comput Mech. 2014;54(1):133‐150. · Zbl 1384.74046
[65] SigmundO, AageN, AndreassenE. On the (non‐)optimality of Michell structures. Struct Multidiscip Optim. 2016;54(2):361‐373.
[66] AageN, AndreassenE, LazarovB. Topology optimization using PETSc: an easy‐to‐use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim. 2015;51(3):565‐572.
[67] AageN, AndreassenE, LazarovB, SigmundO. Giga‐voxel computational morphogenesis for structural design. Nature. 2017;550:84‐86.
[68] XuJ, ZikatanovL. Algebraic multigrid methods. Acta Numerica. 2017;26:591‐721. · Zbl 1378.65182
[69] EfendievY, GalvisJ, WuX‐H. Multiscale finite element methods for high‐contrast problems using local spectral basis functions. J Comput Phys. 2011;230(4):937‐955. · Zbl 1391.76321
[70] AlexandersenJ, LazarovBS. Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput Methods Appl Mech Eng. 2015;290:156‐182. · Zbl 1423.74738
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.