×

Regularization of classical optimality conditions in optimization problems for linear Volterra-type systems with functional constraints. (Russian. English summary) Zbl 07864337

Summary: We consider the regularization of classical optimality conditions (COCs) – the Lagrange principle (LP) and the Pontryagin maximum principle (PMP) – in a convex optimal control problem with functional constraints such as equalities and inequalities. The controlled system is given by a linear functional-operator equation of the second kind of general form in the space \(L^m_2,\) the main operator on the right side of the equation is assumed to be quasi-nilpotent. The problem functional to be minimized is convex (probably not strongly). The regularization of the COCs in the non-iterative and iterative forms is based on the use of the methods of dual regularization and iterative dual regularization, respectively. Obtaining non-iterative regularized COCs uses two regularization parameters, one of which is “responsible” for the regularization of the dual problem, the other is contained in a strongly convex regularizing Tikhonov addition to the objective functional of the original problem, thereby ensuring the correctness of the problem of minimizing the Lagrange function. The main purpose of regularized LP and PMP is the stable generation of minimizing approximate solutions (MASs) in the sense of J. Warga. Regularized COCs: 1) are formulated as existence theorems for MASs in the original problem with simultaneous constructive representation of specific MASs; 2) are sequential generalizations of classical analogues – their limiting variants and preserve the general structure of the latter; 3) “overcome” the ill-posedness properties of the COCs and give regularizing algorithms for solving optimization problems. Illustrating examples are considered: the problem of optimal control for the equation with delay, the problem of optimal control for the integrodifferential equation of the type of transport equation.

MSC:

49K20 Optimality conditions for problems involving partial differential equations
47A52 Linear operators and ill-posed problems, regularization
35R25 Ill-posed problems for PDEs
49N15 Duality theory (optimization)
90C46 Optimality conditions and duality in mathematical programming

References:

[1] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 · Zbl 0516.49002
[2] E. R. Avakov, G. G. Magaril-Ilyaev, V. M. Tikhomirov, “O printsipe Lagranzha v zadachakh na ekstremum pri nalichii ogranichenii”, Uspekhi matem. nauk, 68:3(411) (2013), 5-38 · Zbl 1275.49041 · doi:10.4213/rm9525
[3] A. V. Arutyunov, G. G. Magaril-Il“yaev, V. M. Tikhomirov, Pontryagin”s Maximum Principle. Proof and Applications, Faktorial Press Publ., Moscow, 2006 (In Russian)
[4] R. V. Gamkrelidze, “Istoriya otkrytiya printsipa maksimuma Pontryagina”, Optimalnoe upravlenie i differentsialnye uravneniya, Sbornik statei. K 110-letiyu so dnya rozhdeniya akademika Lva Semenovicha Pontryagina, Trudy MIAN, 304, MIAN, M., 2019, 7-14 · doi:10.4213/tm3964
[5] Nekorrektnye zadachi estestvoznaniya, eds. A. N. Tikhonov, A. V. Goncharskii, Izd-vo MGU, M., 1987; Ill posed Problems in the Natural Science, Advances in science and technology in the USSR . Mathematics and mechanics series, eds. A. N. Tikhonov, A. V. Goncharskii, Mir Publ., Moscow, 1989
[6] F. P. Vasil’ev, Optimization Methods: In 2 books, MCCME, Moscow, 2011 (In Russian)
[7] M. I. Sumin, “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Inst. Mat. Mekh. UrO RAN, 25, no. 1, 2019, 279-296 (In Russian)
[8] M. I. Sumin, “Lagrange principle and its regularization as a theoretical basis of stable solving optimal control and inverse problems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:134 (2021), 151-171 (In Russian) · Zbl 1488.49042
[9] M. I. Sumin, “On ill-posed problems, extremals of the Tikhonov functional and the regularized Lagrange principles”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:137 (2022), 58-79 (In Russian) · Zbl 1504.47029
[10] V. I. Sumin, M. I. Sumin, “Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp‘yuternye nauki, 31:2 (2021), 265-284 (In Russian) · Zbl 1483.49029
[11] V. I. Sumin, M. I. Sumin, “Regulyarizatsiya klassicheskikh uslovii optimalnosti v zadachakh optimalnogo upravleniya lineinymi raspredelennymi sistemami volterrova tipa”, Zhurn. vychisl. matem. i matem. fiz., 62:1 (2022), 45-70 · Zbl 1484.49008 · doi:10.31857/S0044466921110144
[12] V. I. Sumin, Functional Volterra Equations in the Theory of Optimal Control of Distributed Systems, Izd-vo Nizhegorodskogo Gosuniversiteta, Nizhnii Novgorod, 1992 (In Russian)
[13] V. I. Sumin, A. V. Chernov, “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. ur-niya, 34:10 (1998), 1402-1411 · Zbl 0958.47014
[14] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967; I. Ts. Gokhberg, M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, American Mathematical Society, Providence, 1970 · Zbl 0194.43804
[15] V. I. Sumin, “Funktsionalno-operatornye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami”, Dokl. AN SSSR, 305:5 (1989), 1056-1059 · Zbl 0695.49006
[16] V. I. Sumin, “Controlled Volterra functional equations and the contraction mapping principle”, Trudy Inst. Mat. Mekh. UrO RAN, 25:1 (2019), 262-278 (In Russian)
[17] M. I. Sumin, “Regulyarizovannaya parametricheskaya teorema Kuna-Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matem. i matem. fiz., 51:9 (2011), 1594-1615 · Zbl 1274.90266
[18] M. I. Sumin, “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zhurn. vychisl. matem. i matem. fiz., 54:1 (2014), 25-49 · Zbl 1313.90252 · doi:10.7868/S0044466914010141
[19] Dzh. Varga, Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977; J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972 · Zbl 0253.49001
[20] M. I. Sumin, Incorrect Problems and Methods for Solving Them. Materials for Lectures for Students Senior Students, Publishing House of Nizhny Novgorod State University, Nizhny Novgorod, 2009 (In Russian)
[21] M. I. Sumin, “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matem. i matem. fiz., 47:4 (2007), 602-625 · Zbl 1210.49022
[22] M. I. Sumin, “On regularization of the classical optimality conditions in convex optimal control problems”, Trudy Inst. Mat. Mekh. UrO RAN, 26:2 (2020), 252-269 (In Russian)
[23] A. B. Bakushinsky, A. V. Goncharsky, Incorrect Tasks. Numerical Methods and Applications, Moscow University Publishing House, Moscow, 1989 (In Russian)
[24] A. V. Dmitruk, Convex Analysis. Elementary Introductory Course: Textbook, Publishing department of the Faculty of Computer Science and Technology of Moscow State University; MAX Press, Moscow, 2012 (In Russian)
[25] K. Jorgens, “An asymptotic expansion in the theory of neutron transport”, Comm. Pure Appl. Math., 11:2 (1958), 219-242 · Zbl 0081.44105 · doi:10.1002/cpa.3160110206
[26] S. F. Morozov, “Non-stationary integro-differential transport equation”, Izv. Vyssh. Uchebn. Zaved., Mat., 1969, no. 1, 26-31 (In Russian) · Zbl 0175.40902
[27] Yu. A. Kuznetsov, S. F. Morozov, “Correctness of the mixed problem statement for the nonstationary transport equation”, Differ. Uravn., 8:9 (1972), 1639-1648 (In Russian) · Zbl 0267.45019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.