×

Complex Dirac structures with constant real index on flag manifolds. (English) Zbl 07864258

The paper studies invariant complex Dirac structures with constant real index. Recall that a Dirac structure on a manifold \(M\) is a subbundle \(L\subset TM\oplus T^*M\) which is both maximal isotropic with respect to the natural symmetric pairing defined on \(TM\oplus T^*M\) and involutive with respect to the Courant bracket. It is possible to extend the natural pairing and the Courant bracket, which leads to the notion of complex Dirac structures. In this paper, the authors first recall the relevant notions and results. They introduce the concept of flag manifolds and review generalized complex structures, which are a special case of complex Dirac structures. The authors then prove the main result, which is the classification of all invariant complex Dirac structures with constant real index on a maximal flag manifold under the action of B-transformations in terms of the roots of the Lie algebra which defines the flag manifold. Explicit examples of invariant complex Dirac structures for the maximal flag manifolds associated to the semisimple Lie algebras are also given.

MSC:

32Q57 Classification theorems for complex manifolds
14M15 Grassmannians, Schubert varieties, flag manifolds
32Q15 Kähler manifolds

References:

[1] Aguero, D.: Complex Dirac structures with constant real index, PhD Thesis, IMPA (2020)
[2] Aguero, D.; Rubio, R., Complex Dirac structures: invariants and local structures, Commun. Math. Phys., 396, 623-646, 2022 · Zbl 1506.53084 · doi:10.1007/s00220-022-04471-1
[3] Borel, A., Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. of Sci., 40, 1147-1151, 1954 · Zbl 0058.16002 · doi:10.1073/pnas.40.12.1147
[4] Borel, A.; Hirzebruch, F., Characteristic classes and homogeneous spaces, I. Am. J. Math., 80, 2, 458-538, 1958 · Zbl 0097.36401 · doi:10.2307/2372795
[5] Borel, A.; Hirzebruch, F., Characteristic classes and homogeneous spaces, II. Am. J. Math., 81, 2, 315-382, 1959 · doi:10.2307/2372747
[6] Bursztyn, H.: A brief introduction to Dirac manifolds. Geometric and topological methods for quantum field theory (2013), pp. 4-38
[7] Cavalcanti, G.; Gualtieri, M., Generalized complex structures on nilmanifolds, J. Symplectic Geo., 2, 3, 393-410, 2004 · Zbl 1079.53106 · doi:10.4310/JSG.2004.v2.n3.a5
[8] Courant, T., Dirac manifolds, Trans. Am. Math. Soc., 319, 2, 281-312, 1990 · doi:10.1090/S0002-9947-1990-0998124-1
[9] Gasparim, E.; Valencia, F.; Varea, C., Invariant generalized complex geometry on maximal flag manifolds and their moduli, J. Geom. Phys., 163, 2021 · Zbl 1473.58005 · doi:10.1016/j.geomphys.2021.104108
[10] Gualtieri, M.: Generalized complex geometry, Ann. Math. (2011), pp. 75-123 · Zbl 1235.32020
[11] Gualtieri, M.: Generalized complex geometry, D.Phil. Thesis, Oxford University (2003)
[12] Hitchin, N., Generalized Calabi-Yau manifolds, Q. J. Math., 54, 3, 281-308, 2003 · Zbl 1076.32019 · doi:10.1093/qmath/hag025
[13] San Martin, L.; Negreiros, C., Invariant almost Hermitian structures on flag manifolds, Adv. Math., 178, 2, 277-310, 2003 · Zbl 1044.53053 · doi:10.1016/S0001-8708(02)00073-7
[14] Varea, C.; San Martin, L., Invariant generalized complex structures on flag manifolds, J. Geom. Phys., 150, 2020 · Zbl 1440.53094 · doi:10.1016/j.geomphys.2020.103610
[15] Varea, C., Invariant generalized complex structures on partial flag manifolds, Indag. Math. (N.S.), 31, 4, 536-555, 2020 · Zbl 1440.22038 · doi:10.1016/j.indag.2020.04.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.