×

The shifted boundary method for solid mechanics. (English) Zbl 07863919

Summary: We propose a new embedded/immersed framework for computational solid mechanics, aimed at vastly speeding up the cycle of design and analysis in complex geometry. In many problems of interest, our approach bypasses the complexities associated with the generation of CAD representations and subsequent body-fitted meshing, since it only requires relatively simple representations of the surface geometries to be simulated, such as collections of disconnected triangles in three dimensions, widely used in computer graphics. Our approach avoids the complex treatment of cut elements, by resorting to an approximate boundary representation and a special (shifted) treatment of the boundary conditions to maintain optimal accuracy. Natural applications of the proposed approach are problems in biomechanics and geomechanics, in which the geometry to be simulated is obtained from imaging techniques. Similarly, our computational framework can easily treat geometries that are the result of topology optimization methods and are realized with additive manufacturing technologies. We present a full analysis of stability and convergence of the method, and we complement it with an extensive set of computational experiments in two and three dimensions, for progressively more complex geometries.
{© 2021 John Wiley & Sons Ltd.}

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
76Mxx Basic methods in fluid mechanics
74Sxx Numerical and other methods in solid mechanics
Full Text: DOI

References:

[1] CottrellJA, RealiA, BazilevsY, HughesTJR. Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng. 2006;195(41):5257‐5296. https://doi.org/10.1016/j.cma.2005.09.027 · Zbl 1119.74024 · doi:10.1016/j.cma.2005.09.027
[2] BazilevsY, CaloVM, CottrellJA, et al. Isogeometric analysis using T‐splines. Comput Methods Appl Mech Eng. 2010;199(5):229‐263. https://doi.org/10.1016/j.cma.2009.02.036 · Zbl 1227.74123 · doi:10.1016/j.cma.2009.02.036
[3] ParvizianJ, DüsterA, RankE. Finite cell method. Comput Mech. 2007;41(1):121‐133. https://doi.org/10.1007/s00466‐007‐0173‐y · Zbl 1162.74506 · doi:10.1007/s00466‐007‐0173‐y
[4] DüsterA, ParvizianJ, YangZ, RankE. The finite cell method for three‐dimensional problems of solid mechanics. Comput Method Appl Mech Eng. 2008;197(45):3768‐3782. https://doi.org/10.1016/j.cma.2008.02.036 · Zbl 1194.74517 · doi:10.1016/j.cma.2008.02.036
[5] RangarajanR, LewA, BuscagliaGC. A discontinuous‐Galerkin‐based immersed boundary method with non‐homogeneous boundary conditions and its application to elasticity. Comput Methods Appl Mech Eng. 2009;198(17‐20):1513‐1534. · Zbl 1227.74091
[6] SchillingerD, DedeL, ScottMA, et al. An isogeometric design‐through‐analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T‐spline CAD surfaces. Comput Methods Appl Mech Eng. 2012;249-252:116‐150. https://doi.org/10.1016/j.cma.2012.03.017 · Zbl 1348.65055 · doi:10.1016/j.cma.2012.03.017
[7] HansboP, LarsonMG, LarssonK. Cut finite element methods for linear elasticity problems. Geometrically Unfitted Finite Element Methods and Applications. New York, NY: Springer; 2017:25‐63. · Zbl 1390.74180
[8] ParvizianJ, DüsterA, RankE. Topology optimization using the finite cell method. Optim Eng. 2012;13(1):57‐78. https://doi.org/10.1007/s11081‐011‐9159‐x · Zbl 1293.74357 · doi:10.1007/s11081‐011‐9159‐x
[9] BandaraK, RübergT, CirakF. Shape optimisation with multiresolution subdivision surfaces and immersed finite elements. Comput Methods Appl Mech Eng. 2016;300:510‐539. https://doi.org/10.1016/j.cma.2015.11.015 · Zbl 1425.74385 · doi:10.1016/j.cma.2015.11.015
[10] BurmanE, ElfversonD, HansboP, LarsonMG, LK. Shape optimization using the cut finite element method. Comput Methods Appl Mech Eng. 2018;328:242‐261. https://doi.org/10.1016/j.cma.2017.09.005 · Zbl 1439.74316 · doi:10.1016/j.cma.2017.09.005
[11] NitscheJ. Uber ein Variationsprinzip zur Losung Dirichlet‐Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unteworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg. 1971;36(1):9‐15. https://doi.org/10.1007/BF02995904 · Zbl 0229.65079 · doi:10.1007/BF02995904
[12] HansboA, HansboP. An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Eng. 2002;191(47):5537‐5552. https://doi.org/10.1016/S0045‐7825(02)00524‐8 · Zbl 1035.65125 · doi:10.1016/S0045‐7825(02)00524‐8
[13] BurmanE. Ghost penalty. Comptes Rendus Mathematique. 2010;348(21):1217‐1220. https://doi.org/10.1016/j.crma.2010.10.006 · Zbl 1204.65142 · doi:10.1016/j.crma.2010.10.006
[14] BurmanE, HansboP. Fictitious domain methods using cut elements: III. a stabilized Nitsche method for Stokes’ problem. ESAIM Math Modelling Numer Anal. 2014;48(3):859‐874. https://doi.org/10.1051/m2an/2013123 · Zbl 1416.65437 · doi:10.1051/m2an/2013123
[15] SchottB, RasthoferU, GravemeierV, WallWA. A face‐oriented stabilized Nitsche‐type extended variational multiscale method for incompressible two‐phase flow. Int J Numer Methods Eng. 2015;104(7):721‐748. https://doi.org/10.1002/nme.4789 · Zbl 1352.76067 · doi:10.1002/nme.4789
[16] SchottB, WallWA. A new face‐oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng. 2014;276:233‐265. https://doi.org/10.1016/j.cma.2014.02.014 · Zbl 1423.76273 · doi:10.1016/j.cma.2014.02.014
[17] MainA, ScovazziG. The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. J Comput Phys. 2018;372:972‐995. https://doi.org/10.1016/j.jcp.2017.10.026 · Zbl 1415.76457 · doi:10.1016/j.jcp.2017.10.026
[18] MainA, ScovazziG. The shifted boundary method for embedded domain computations. Part II: linear advection-diffusion and incompressible Navier‐Stokes equations. J Comput Phys. 2018;372:996‐1026. https://doi.org/10.1016/j.jcp.2018.01.023 · Zbl 1415.76458 · doi:10.1016/j.jcp.2018.01.023
[19] SongT, MainA, ScovazziG, RicchiutoM. The shifted boundary method for hyperbolic systems: embedded domain computations of linear waves and shallow water flows. J Comput Phys. 2018;369:45‐79. https://doi.org/10.1016/j.jcp.2018.04.052 · Zbl 1392.76010 · doi:10.1016/j.jcp.2018.04.052
[20] NouveauL, RicchiutoM, ScovazziG. High‐order gradients with the shifted boundary method: an embedded enriched mixed formulation for elliptic PDEs. J Comput Phys. 2019;398:108898. https://doi.org/10.1016/j.jcp.2019.108898 · Zbl 1453.76082 · doi:10.1016/j.jcp.2019.108898
[21] AtallahNM, CanutoC, ScovazziG. Analysis of the shifted boundary method for the Stokes problem. Comput Methods Appl Mech Eng. 2020;358:112609. https://doi.org/10.1016/j.cma.2019.112609 · Zbl 1441.76037 · doi:10.1016/j.cma.2019.112609
[22] BelyaevAG, FayolleP‐A. On variational and PDE‐based distance function approximations. Comput Graph Forum (Wiley Online Library). 2015;34(8):104‐118.
[23] MoësN, DolbowJ, BelytschkoT. A finite element method for crack growth without remeshing. Int J Numerical Methods Eng. 1999;46(1):131‐150. · Zbl 0955.74066
[24] MouradHM, DolbowJ, HarariI. A bubble‐stabilized finite element method for Dirichlet constraints on embedded interfaces. Int J Numer Methods Eng. 2007;69(4):772‐793. · Zbl 1194.65136
[25] MelenkJM, BabuškaI. The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng. 1996;139(1‐4):289‐314. · Zbl 0881.65099
[26] WellsGN, SluysLJ. A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng. 2001;50(12):2667‐2682. · Zbl 1013.74074
[27] LinderC, ArmeroF. Finite elements with embedded strong discontinuities for the modeling of failure in solids. Int J Numer Methods Eng. 2007;72(12):1391‐1433. · Zbl 1194.74431
[28] RangarajanR, LewAJ. Universal meshes: a new paradigm for computing with nonconforming triangulations; 2012. arXiv preprint arXiv:1201.4903.
[29] RangarajanR, LewAJ. Universal meshes: a method for triangulating planar curved domains immersed in nonconforming meshes. Int J Numer Methods Eng. 2014;98(4):236‐264. · Zbl 1352.65617
[30] RangarajanR, LewAJ. Analysis of a method to parameterize planar curves immersed in triangulations. SIAM J Numer Anal. 2013;51(3):1392‐1420. · Zbl 1272.68417
[31] PeskinCS. Numerical analysis of blood flow in the heart. J Comput Phys. 1977;25(3):220‐252. · Zbl 0403.76100
[32] PeskinCS. The immersed boundary method. Acta Numer. 2002;11:479‐517. · Zbl 1123.74309
[33] ColomésO, MainA, NouveauL, ScovazziG. A weighted shifted boundary method for free surface flow problems. J Comput Phys. 2021;424:109837. https://doi.org/10.1016/j.jcp.2020.109837 · Zbl 07508445 · doi:10.1016/j.jcp.2020.109837
[34] DuvautG, LionsJL. Les inéquations en mécanique et en physique. Paris: Dunod; 1972. · Zbl 0298.73001
[35] CiarletPG. Mathematical Elasticity. Volume I: Three‐Dimensional Elasticity. Amsterdam, Netherlands: North‐Holland; 1988. · Zbl 0648.73014
[36] GrisvardP. Elliptic Problems in Nonsmooth Domains. Philadelphia: SIAM; 2011. · Zbl 1231.35002
[37] GrisvardP. Singularities in elasticity theory. In: CiarletPG (ed.), RoseauM (ed.), eds. Applications of Multiple Scaling in Mechanics. Paris: Masson; 1987:134‐150. · Zbl 0633.73014
[38] AtallahNM, CanutoC, ScovazziG. Analysis of the shifted boundary method for the poisson problem in general domains. Math Comput. 2020. https://arxiv.org/abs/2006.00872
[39] CerveraM, ChiumentiM, CodinaR. Mixed stabilized finite element methods in nonlinear solid mechanics: Part I: formulation. Comput Methods Appl Mech Eng. 2010;199(37):2559‐2570. https://doi.org/10.1016/j.cma.2010.04.006 · Zbl 1231.74404 · doi:10.1016/j.cma.2010.04.006
[40] CerveraM, ChiumentiM, CodinaR. Mixed stabilized finite element methods in nonlinear solid mechanics: Part II: strain localization. Comput Methods Appl Mech Eng. 2010;199(37):2571‐2589. https://doi.org/10.1016/j.cma.2010.04.005 · Zbl 1231.74405 · doi:10.1016/j.cma.2010.04.005
[41] CerveraM, ChiumentiM, BenedettiL, CodinaR. Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: compressible and incompressible plasticity. Comput Methods Appl Mech Eng. 2015;285:752‐775. https://doi.org/10.1016/j.cma.2014.11.040 · Zbl 1423.74149 · doi:10.1016/j.cma.2014.11.040
[42] LafontaineNM, RossiR, CerveraM, ChiumentiM. Explicit mixed strain‐displacement finite element for dynamic geometrically non‐linear solid mechanics. Comput Mech. 2015;55(3):543‐559. https://doi.org/10.1007/s00466‐015‐1121‐x · Zbl 1311.74028 · doi:10.1007/s00466‐015‐1121‐x
[43] CerveraM, LafontaineN, RossiR, ChiumentiM. Explicit mixed strain-displacement finite elements for compressible and quasi‐incompressible elasticity and plasticity. Comput Mech. 2016;58(3):511‐532. https://doi.org/10.1007/s00466‐016‐1305‐z · Zbl 1398.74315 · doi:10.1007/s00466‐016‐1305‐z
[44] ScovazziG, SongT, ZengX. A velocity/stress mixed stabilized nodal finite element for elastodynamics: analysis and computations with strongly and weakly enforced boundary conditions. Comput Methods Appl Mech Eng. 2017;325:532‐576. https://doi.org/10.1016/j.cma.2017.07.018 · Zbl 1439.74148 · doi:10.1016/j.cma.2017.07.018
[45] SimoJC, ArmeroF, TaylorRL. Improved versions of assumed enhanced strain tri‐linear elements for 3D finite deformation problems. Comput Methods Appl Mech Eng. 1993;110(3‐4):359‐386. · Zbl 0846.73068
[46] SimoJ‐C, ArmeroF. Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng. 1992;33(7):1413‐1449. · Zbl 0768.73082
[47] TaylorRL. A mixed‐enhanced formulation tetrahedral finite elements. Int J Numer Methods Eng. 2000;47(1‐3):205‐227. · Zbl 0985.74074
[48] KasperEP, TaylorRL. A mixed‐enhanced strain method: Part I: geometrically linear problems. Comput Struct. 2000;75(3):237‐250.
[49] NoelsL, RadovitzkyR. A general discontinuous Galerkin method for finite hyperelasticity. formulation and numerical applications. Int J Numer Methods Eng. 2006;68(1):64‐97. · Zbl 1145.74039
[50] TenEA, LewA. Discontinuous Galerkin methods for non‐linear elasticity. Int J Numer Methods Eng. 2006;67(9):1204‐1243. · Zbl 1113.74068
[51] LewA, NeffP, SulskyD, OrtizM. Optimal BV estimates for a discontinuous Galerkin method for linear elasticity. Appl Math Res Express. 2004;2004(3):73‐106. · Zbl 1115.74021
[52] RiviereB, ShawS, WheelerMF, WhitemanJR. Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numerische Mathematik. 2003;95(2):347‐376. · Zbl 1253.74114
[53] RiviereB, WheelerMF. Optimal error estimates for discontinuous Galerkin methods applied to linear elasticity problems. Citeseer; 2000.
[54] BrezziF, FortinM. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Vol 15. New York, NY: Springer; 1991. · Zbl 0788.73002
[55] HughesTJR, FeijóoGR, MazzeiL, QuincyJB. The variational multiscale method– a paradigm for computational mechanics. Comput Methods Appl Mech Eng. 1998;166(1):3‐24. https://doi.org/10.1016/S0045‐7825(98)00079‐6 · Zbl 1017.65525 · doi:10.1016/S0045‐7825(98)00079‐6
[56] BadiaS, CodinaR. Unified stabilized finite element formulations for the stokes and the Darcy problems. SIAM J Numer Anal. 2009;47(3):1971‐2000. https://doi.org/10.1137/08072632X · Zbl 1406.76047 · doi:10.1137/08072632X
[57] AtallahNM, CanutoC, ScovazziG. The second‐generation Shifted boundary method and its numerical analysis. Comput Methods Appl Mech Eng. 2020;372:113341. https://doi.org/10.1016/j.cma.2020.113341 · Zbl 1506.76063 · doi:10.1016/j.cma.2020.113341
[58] HughesTJR, MasudA, WanJ. A stabilized mixed discontinuous Galerkin method for Darcy flow. Comput Methods Appl Mech Eng. 2006;195(25):3347‐3381. https://doi.org/10.1016/j.cma.2005.06.018 · Zbl 1120.76040 · doi:10.1016/j.cma.2005.06.018
[59] BadiaS, CodinaR. Stabilized continuous and discontinuous Galerkin techniques for Darcy flow. Comput Methods Appl Mech Eng. 2010;199(25):1654‐1667. https://doi.org/10.1016/j.cma.2010.01.015 · Zbl 1231.76134 · doi:10.1016/j.cma.2010.01.015
[60] ErnA, GuermondJ‐L. Theory and Practice of Finite Elements. Applied Mathematical Sciences. Vol 159. New York, NY: Springer; 2004. · Zbl 1059.65103
[61] LiK, AtallahNM, MainGA, ScovazziG. The shifted interface method: a flexible approach to embedded interface computations. Int J Numer Methods Eng. 2019;121(3):492‐518. https://doi.org/10.1002/nme.6231 · Zbl 07843207 · doi:10.1002/nme.6231
[62] TongC, TuminaroR. ML2.0 Smooth Aggregation User’s Guide. Albuquerque, NM: Sandia National Laboratories; 2000.
[63] SimoJC, RifaiMS. A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng. 1990;29(8):1595‐1638. https://doi.org/10.1002/nme.1620290802 · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[64] MudrakV. Part description and specifications for sponge https://grabcad.com/library/sponge.
[65] Stent of 1/8“ cross section and 1.2” length. Grabcad.com. https://grabcad.com/library/stent‐1‐8‐across‐tube‐1‐2‐length. Accessed January 30, 2016.
[66] Imperial college consortium on pore‐scale modelling: LV60A sandpack; 2014. https://figshare.com/articles/LV60A_sandpack/1153795.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.