×

Frobenius integrability of certain \(p\)-forms on singular spaces. (Intégrabilité au sens de Frobenius pour certaines \(p\)-formes sur des espaces singuliers.) (English. French summary) Zbl 07863253

Let \(u\) be a holomorphic \(p\)-form on a compact Kähler manifold \(X\). Then \(u\) is closed, and therefore the subsheaf \(S_u \subset T_X\) consisting of holomorphic vector fields \(\xi\) such that the contraction \(\iota_\xi u := u(\xi, -)\) vanishes is integrable and defines a foliation on \(X\). This follows from Cartan’s magic formula and Frobenius’ theorem.
Demailly generalized this to \(p\)-forms with values in an anti-pseudo-effective line bundle \(L\). The present paper generalizes this further, to singular spaces and reflexive differential forms (those defined on the smooth locus) with values in an anti-pseudo-effective \(\mathbb Q\)-Cartier rank one reflexive sheaf \(\mathscr A\). This works if either \(X\) is klt, or \(X\) is log canonical and \(p = 1\).
The authors also give a corollary about log canonical spaces admitting a contact structure: their canonical divisor is not pseudo-effective.

MSC:

14E30 Minimal model program (Mori theory, extremal rays)
32Q15 Kähler manifolds
32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)

References:

[1] Campana, Frédéric; Flenner, Hubert, Contact singularities, Manuscr. Math., 108, 4, 529-541, 2002 · Zbl 1026.32057 · doi:10.1007/s002290200285
[2] Cascini, Paolo; Spicer, Calum, MMP for co-rank one foliations on threefolds, Invent. Math., 225, 2, 603-690, 2021 · Zbl 1492.14025 · doi:10.1007/s00222-021-01037-1
[3] Demailly, Jean-Pierre, Complex geometry (Göttingen, 2000), On the Frobenius integrability of certain holomorphic \(p\)-forms, 93-98, 2002, Springer · Zbl 1011.32019 · doi:10.1007/978-3-642-56202-0_6
[4] Demailly, Jean-Pierre, Analytic methods in algebraic geometry, 1, viii+231 p. pp., 2012, International Press; Higher Education Press · Zbl 1271.14001
[5] Druel, Stéphane, Codimension \(1\) foliations with numerically trivial canonical class on singular spaces, Duke Math. J., 170, 1, 95-203, 2021 · Zbl 1470.14009 · doi:10.1215/00127094-2020-0041
[6] Graf, Patrick; Kovács, Sándor J., An optimal extension theorem for 1-forms and the Lipman-Zariski conjecture, Doc. Math., 19, 815-830, 2014 · Zbl 1310.14008 · doi:10.4171/dm/465
[7] Greb, Daniel; Kebekus, Stefan; Kovács, Sándor J.; Peternell, Thomas, Differential forms on log canonical spaces, Publ. Math., Inst. Hautes Étud. Sci., 114, 87-169, 2011 · Zbl 1258.14021 · doi:10.1007/s10240-011-0036-0
[8] Greb, Daniel; Kebekus, Stefan; Peternell, Thomas, Reflexive differential forms on singular spaces. Geometry and cohomology, J. Reine Angew. Math., 697, 57-89, 2014 · Zbl 1314.32014 · doi:10.1515/crelle-2012-0097
[9] Greb, Daniel; Kebekus, Stefan; Peternell, Thomas, Projectively flat klt varieties, J. Éc. Polytech., Math., 8, 1005-1036, 2021 · Zbl 1470.32073 · doi:10.5802/jep.164
[10] Graf, Patrick, Bogomolov-Sommese vanishing on log canonical pairs, J. Reine Angew. Math., 702, 109-142, 2015 · Zbl 1344.14023 · doi:10.1515/crelle-2013-0031
[11] Hartshorne, Robin, Algebraic geometry, 52, xvi+496 p. pp., 1977, Springer · Zbl 0531.14001 · doi:10.1007/978-1-4757-3849-0
[12] Kollár, János; Mori, Shigefumi, Birational geometry of algebraic varieties, 134, viii+254 p. pp., 1998, Cambridge University Press · Zbl 0926.14003 · doi:10.1017/CBO9780511662560
[13] Kebekus, Stefan; Schnell, Christian, Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities, J. Am. Math. Soc., 34, 2, 315-368, 2021 · Zbl 1479.14006 · doi:10.1090/jams/962
[14] Loray, Frank; Pereira, Jorge Vitório; Touzet, Frédéric, Singular foliations with trivial canonical class, Invent. Math., 213, 3, 1327-1380, 2018 · Zbl 1426.32014 · doi:10.1007/s00222-018-0806-0
[15] Noguchi, J., A short analytic proof of closedness of logarithmic forms, Kodai Math. J., 18, 2, 295-299, 1995 · Zbl 0841.32005 · doi:10.2996/kmj/1138043426
[16] Ou, Wenhao, Singular rationally connected surfaces with nonzero pluri-forms, Mich. Math. J., 63, 4, 725-745, 2014 · Zbl 1312.14121 · doi:10.1307/mmj/1417799223
[17] Pereira, Jorge Vitório; Touzet, Frédéric, Foliations with vanishing Chern classes, Bull. Braz. Math. Soc. (N.S.), 44, 4, 731-754, 2013 · Zbl 1302.32033 · doi:10.1007/s00574-013-0032-8
[18] Touzet, Frédéric, Foliation theory in algebraic geometry. Proceedings of the conference, New York, NY, USA, September 3-7, 2013, On the structure of codimension 1 foliations with pseudoeffective conormal bundle, 157-216, 2016, Springer · Zbl 1353.37099 · doi:10.1007/978-3-319-24460-0_7
[19] Śmiech, Robert, Singular contact varieties, 2022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.