×

Many-scale finite strain computational homogenization via concentric interpolation. (English) Zbl 07863238

Summary: A method for efficient computational homogenization of hyperelastic materials under finite strains is proposed. Multiple spatial scales are homogenized in a recursive procedure: starting on the smallest scale, few high fidelity FE computations are performed. The resulting fields of deformation gradient fluctuations are processed by a snapshot POD resulting in a reduced basis (RB) model. By means of the computationally efficient RB model, a large set of samples of the homogenized material response is created. This data set serves as the support for the Concentric Interpolation (CI) scheme, interpolating the effective stress and stiffness. Then, the same procedure is invoked on the next larger scale with this CI surrogating the homogenized material law. A three-scale homogenization process is completed within few hours on a standard workstation. The resulting model is evaluated within minutes on a laptop computer in order to generate fourth-scale results. Open source code is provided.
{© 2020 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.}

MSC:

74Qxx Homogenization, determination of effective properties in solid mechanics
74Exx Material properties given special treatment
74Sxx Numerical and other methods in solid mechanics

Software:

GitHub

References:

[1] VoigtW. Lehrbuch der Kristallphysik. Berlin, Germany: Vieweg+Teubner Verlag; 1966.
[2] CiarlettaP, IzzoI, MiceraS, TendickF. Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application. J Mech Behav Biomed Mater. 2011;4(7):1359‐1368. https://doi.org/10.1016/j.jmbbm.2011.05.006. · doi:10.1016/j.jmbbm.2011.05.006
[3] KabelM, BöhlkeT, SchneiderM. Efficient fixed point and Newton-Krylov solvers for FFT‐based homogenization of elasticity at large deformations. Comput Mech. 2014;54(6):1497‐1514. https://doi.org/10.1007/s00466‐014‐1071‐8. · Zbl 1309.74013 · doi:10.1007/s00466‐014‐1071‐8
[4] RambausekM, GöküzümFS, NguyenLTK, KeipMA. A two‐scale FE‐FFT approach to nonlinear magneto‐elasticity. Int J Numer Methods Eng. 2019;117(11):1117‐1142. https://doi.org/10.1002/nme.5993. · Zbl 07865158 · doi:10.1002/nme.5993
[5] YuanZ, FishJ. Multiple scale eigendeformation‐based reduced order homogenization. Comput Methods Appl Mech Eng. 2009;198(21‐26):2016‐2038. https://doi.org/10.1016/j.cma.2008.12.038. · Zbl 1227.74051 · doi:10.1016/j.cma.2008.12.038
[6] Ramírez‐TorresA, PentaR, Rodríguez‐RamosR, et al. Three scales asymptotic homogenization and its application to layered hierarchical hard tissues. Int J Solids Struct. 2018;130‐131:190‐198. https://doi.org/10.1016/j.ijsolstr.2017.09.035. · doi:10.1016/j.ijsolstr.2017.09.035
[7] TakanoN, OkunoY. Three‐scale finite element analysis of heterogeneous media by asymptotic homogenization and mesh superposition methods. Int J Solids Struct. 2004;41(15):4121‐4135. https://doi.org/10.1016/j.ijsolstr.2004.02.049. · Zbl 1079.74653 · doi:10.1016/j.ijsolstr.2004.02.049
[8] NikolovS, PetrovM, LymperakisL, et al. Revealing the design principles of high‐performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle. Adv Mater. 2010;22:519‐526. https://doi.org/10.1002/adma.200902019. · doi:10.1002/adma.200902019
[9] WuM, LiuJ, LvX, ShiD, ZhuZ. A study on homogenization equations of fractal porous media. J Geophys Eng. 2018;15(6):2388‐2398. https://doi.org/10.1088/1742‐2140/aac4c1. · doi:10.1088/1742‐2140/aac4c1
[10] HeidaM, KornhuberR, PodlesnyJ. Fractal homogenization of multiscale interface problems; 2017. arXiv preprint arXiv:1712.01172.
[11] JarroudiME, Er‐RianiM. Homogenization of elastic materials containing self‐similar rigid micro‐inclusions. Contin Mech Thermodyn. 2018;31(2):457‐474. https://doi.org/10.1007/s00161‐018‐0700‐4. · Zbl 1442.74193 · doi:10.1007/s00161‐018‐0700‐4
[12] KuncO, FritzenF. Finite strain homogenization using a reduced basis and efficient sampling. Math Comput Appl. 2019;24(2). https://www.mdpi.com/2297‐8747/24/2/56#cite.
[13] PruchnickiE. Hyperelastic homogenized law for reinforced elastomer at finite strain with edge effects. Acta Mech. 1998;129(3):139‐162. https://doi.org/10.1007/BF01176742. · Zbl 0916.73028 · doi:10.1007/BF01176742
[14] Nemat‐NasserS, HoriM. Micromechanics: Overall Properties of Heterogeneous Materials. 2nd ed.Amsterdam, Netherlands: Elsevier; 1999. https://doi.org/10.1016/c2009‐0‐09128‐4. · doi:10.1016/c2009‐0‐09128‐4
[15] BensoussanA, LionsJL, PapanicolaouG. Asymptotic Analysis for Periodic Structures. Amsterdam/New York: North‐Holland; 1978. https://doi.org/10.1090/chel/374. · Zbl 0404.35001 · doi:10.1090/chel/374
[16] MieheC. Computational micro‐to‐macro transitions for discretized micro‐structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput Methods Appl Mech Eng. 2003;192(5):559‐591. https://doi.org/10.1016/S0045‐7825(02)00564‐9. · Zbl 1091.74530 · doi:10.1016/S0045‐7825(02)00564‐9
[17] FeyelF. Multiscale FE^2 elastoviscoplastic analysis of composite structures. Comput Mater Sci. 1999;16(1‐4):344‐354. https://doi.org/10.1016/S0927‐0256(99)00077‐4. · doi:10.1016/S0927‐0256(99)00077‐4
[18] MieheC. Numerical computation of algorithmic (consistent) tangent moduli in large‐strain computational inelasticity. Comput Methods Appl Mech Eng. 1996;134(3):223‐240. https://doi.org/10.1016/0045‐7825(96)01019‐5. · Zbl 0892.73012 · doi:10.1016/0045‐7825(96)01019‐5
[19] KouznetsovaV, BrekelmansWAM, BaaijensFPT. An approach to micro‐macro modeling of heterogeneous materials. Comput Mech. 2001;27(1):37‐48. https://doi.org/10.1007/s004660000212. · Zbl 1005.74018 · doi:10.1007/s004660000212
[20] KuncO, FritzenF. Efficient assembly of linearized equations in nonlinear homogenization. PAMM. 2019;19(1). https://doi.org/10.1002/pamm.201900322. · doi:10.1002/pamm.201900322
[21] KuncO, FritzenF. Generation of energy‐minimizing point sets on spheres and their application in mesh‐free interpolation and differentiation. Adv Comput Math. 2019;45(5‐6):3021‐3056. https://doi.org/10.1007/s10444‐019‐09726‐5. · Zbl 1436.31015 · doi:10.1007/s10444‐019‐09726‐5
[22] FritzenF, KuncO. Two‐stage data‐driven homogenization for nonlinear solids using a reduced order model. Europ J Mech A/Solids. 2018;69:201‐220. https://doi.org/10.1016/j.euromechsol.2017.11.007. · Zbl 1406.74560 · doi:10.1016/j.euromechsol.2017.11.007
[23] FritzenF, KuncO. GitHub repository concentric interpolation; 2020. https://github.com/EMMA‐Group/ConcentricInterpolation.
[24] FasshauerG, McCourtM. Kernel‐Based Approximation Methods Using Matlab. 19th ed.Singapore: World Scientific; 2015. https://doi.org/10.1142/9335. · Zbl 1318.00001 · doi:10.1142/9335
[25] FasshauerGE, SchumakerLL. Scattered data fitting on the sphere. Math Methods Curves Surf II. 1998;117‐166. · Zbl 0904.65015
[26] SpahnJ, AndräH, KabelM, MüllerR. A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms. Comput Methods Appl Mech Eng. 2014;268:871‐883. https://doi.org/10.1016/j.cma.2013.10.017. · Zbl 1295.74006 · doi:10.1016/j.cma.2013.10.017
[27] LeuschnerM, FritzenF. Fourier‐accelerated nodal solvers (FANS) for homogenization problems. Comput Mech. 2018;62(3):359‐392. https://doi.org/10.1007/s00466‐017‐1501‐5. · Zbl 1471.74073 · doi:10.1007/s00466‐017‐1501‐5
[28] RallLB (ed.), ed. Automatic Differentiation: Techniques and Applications. Berlin, Heidelberg/Germany: Springer; 1981. https://doi.org/10.1007/3‐540‐10861‐0. · Zbl 0473.68025 · doi:10.1007/3‐540‐10861‐0
[29] FritzenF, KuncO. GitHub repository MinimumEnergyPoints; 2020. https://github.com/EMMA‐Group/MinimumEnergyPoints.
[30] YvonnetJ, MonteiroE, HeQC. Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. J Multiscale Comput Eng. 2013;11(3):201‐225. https://doi.org/10.1615/IntJMultCompEng.2013005374. · doi:10.1615/IntJMultCompEng.2013005374
[31] BrandsB, DavydovD, MergheimJ, SteinmannP. Reduced‐order modelling and homogenisation in magneto‐mechanics: a numerical comparison of established hyper‐reduction methods. Math Comput Appl. 2019;24(1). https://doi.org/10.3390/mca24010020. · doi:10.3390/mca24010020
[32] ÖzdemirI, BrekelmansW, FE2GM. computational homogenization for the thermo‐mechanical analysis of heterogeneous solids. Comput Methods Appl Mech Eng. 2008;198(3‐4):602‐613. https://doi.org/10.1016/j.cma.2008.09.008. · Zbl 1228.74065 · doi:10.1016/j.cma.2008.09.008
[33] SirovichL. Turbulence and the dynamics of coherent structures. Part 1: coherent structures. Q Appl Math. 1987;45:561‐571. https://doi.org/10.1090/qam/910462. · Zbl 0676.76047 · doi:10.1090/qam/910462
[34] YangZ, LongC, SunY. A high‐order three‐scale reduced asymptotic approach for thermo‐mechanical problems of nonlinear heterogeneous materials with multiple spatial scales. Europ J Mech A/Solids. 2020;80:103905. https://doi.org/10.1016/j.euromechsol.2019.103905. · Zbl 1472.74183 · doi:10.1016/j.euromechsol.2019.103905
[35] KaliskeM, HeinrichG. An extended tube‐model for rubber elasticity: statistical‐mechanical theory and finite element implementation. Rubber Chem Technol. 1999;72:602‐632. https://doi.org/10.5254/1.3538822. · doi:10.5254/1.3538822
[36] DollS, SchweizerhofK. On the development of volumetric strain energy functions. J Appl Mech. 1999;67(1):17‐21. https://doi.org/10.1115/1.321146. · Zbl 1110.74418 · doi:10.1115/1.321146
[37] MarckmannG, VerronE. Comparison of hyperelastic models for rubber‐like materials. Rubber Chem Technol. 2006;79(5):835‐858. https://doi.org/10.5254/1.3547969. · doi:10.5254/1.3547969
[38] ForestS. Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech. 2009;135(3):117‐131. https://doi.org/10.1061/(asce)0733‐9399(2009)135:3(117). · doi:10.1061/(asce)0733‐9399(2009)135:3(117)
[39] SimoJ. On a fully three‐dimensional finite‐strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng. 1987;60(2):153‐173. https://doi.org/10.1016/0045‐7825(87)90107‐1. · Zbl 0588.73082 · doi:10.1016/0045‐7825(87)90107‐1
[40] FritzenF, FernándezM, LarssonF. On‐the‐fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Front Mater. 2019;6(75):1‐18. https://doi.org/10.3389/fmats.2019.00075. · doi:10.3389/fmats.2019.00075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.