×

A set of 2-recurrence whose perfect squares do not form a set of measurable recurrence. (English) Zbl 07862706

Summary: We say that \(S\subseteq \mathbb{Z}\) is a set of \(k\)-recurrence if for every measure-preserving transformation \(T\) of a probability measure space \((X,\mu)\) and every \(A\subseteq X\) with \(\mu (A)>0\), there is an \(n\in S\) such that \(\mu (A\cap T^{-n} A\cap T^{-2n}\cap \cdots \cap T^{-kn}A)>0\). A set of \(1\)-recurrence is called a set of measurable recurrence. Answering a question of N. Frantzikinakis et al. [Ann. Inst. Fourier 56, No. 6, 839–849 (2006; Zbl 1123.37001)], we construct a set of \(2\)-recurrence \(S\) with the property that \(\{n^2:n\in S\}\) is not a set of measurable recurrence.

MSC:

37A44 Relations between ergodic theory and number theory
37A30 Ergodic theorems, spectral theory, Markov operators
37A05 Dynamical aspects of measure-preserving transformations
11B30 Arithmetic combinatorics; higher degree uniformity

Citations:

Zbl 1123.37001

References:

[1] Ackelsberg, E., Bergelson, V. and Best, A.. Multiple recurrence and large intersections for abelian group actions. Discrete Anal.18 (2021), 91 pp. · Zbl 1539.37004
[2] Bergelson, V., Host, B. and Kra, B.. Multiple recurrence and nilsequences. Invent. Math.160(2) (2005), 261-303, with an appendix by I. Ruzsa. · Zbl 1087.28007
[3] Bergelson, V., Host, B., Mccutcheon, R. and Parreau, F.. Aspects of uniformity in recurrence. Colloq. Math.84/85 (2000), 549-576, dedicated to the memory of A. Iwanik. · Zbl 0966.28009
[4] Einsiedler, M. and Ward, T.. Ergodic Theory: With a View Towards Number Theory(Graduate Texts in Mathematics, 259). Springer, London, 2011. · Zbl 1206.37001
[5] Forrest, A. H.. Recurrence in dynamical systems: a combinatorial approach. PhD Thesis, The Ohio State University, ProQuest LLC, Ann Arbor, MI, 1990.
[6] Frantzikinakis, N.. Multiple ergodic averages for three polynomials and applications. Trans. Amer. Math. Soc.360(10) (2008), 5435-5475. · Zbl 1158.37006
[7] Frantzikinakis, N.. Powers of sequences and recurrence. Proc. Lond. Math. Soc. (3)98(2) (2009), 504-530. · Zbl 1173.37006
[8] Frantzikinakis, N.. Some open problems on multiple ergodic averages. Bull. Hellenic Math. Soc.60 (2016), 41-90. · Zbl 1425.37004
[9] Frantzikinakis, N. and Kra, B.. Polynomial averages converge to the product of integrals. Israel J. Math.148 (2005), 267-276. · Zbl 1155.37303
[10] Frantzikinakis, N., Lesigne, E. and Wierdl, M.. Sets of \(k\) -recurrence but not \(\left(k+1\right)\) -recurrence. Ann. Inst. Fourier (Grenoble)56(4) (2006), 839-849. · Zbl 1123.37001
[11] Furstenberg, H.. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math.31 (1977), 204-256. · Zbl 0347.28016
[12] Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorial Number Theory (Princeton University Press, Princeton, NJ, 1981), M. B. Porter. Lectures (82j:28010). · Zbl 0459.28023
[13] Furstenberg, H. and Katznelson, Y.. An ergodic Szemerédi theorem for commuting transformations. J. Anal. Math.34 (1978), 275-291. · Zbl 0426.28014
[14] Gowers, W. T.. A new proof of Szemerédi’s theorem. Geom. Funct. Anal.11(3) (2001), 465-588. · Zbl 1028.11005
[15] Griesmer, J. T.. Separating Bohr denseness from measurable recurrence. Discrete Anal.9 (2021), 20 pp. · Zbl 1498.11034
[16] Griesmer, J. T.. Separating topological recurrence from measurable recurrence: exposition and extension of Kriz’s example. Preprint, 2022, arXiv:2108.01642.
[17] Host, B. and Kra, B.. Nilpotent Structures in Ergodic Theory(Mathematical Surveys and Monographs, 236). American Mathematical Society, Providence, RI, 2018.
[18] Kříž, I.. Large independent sets in shift-invariant graphs: solution of Bergelson’s problem. Graphs Combin.3(2) (1987), 145-158. · Zbl 0641.05044
[19] Kuipers, L. and Niederreiter, H.. Uniform Distribution of Sequences(Pure and Applied Mathematics). Wiley-Interscience, New York, 1974. · Zbl 0281.10001
[20] Mccutcheon, R.. Three results in recurrence. Ergodic Theory and Its Connections with Harmonic Analysis (Alexandria, 1993)(London Mathematical Society Lecture Note Series, 205). Eds. Petersen, K. E. and Salama, I.. Cambridge University Press, Cambridge, 1995, pp. 349-358. · Zbl 0867.28010
[21] Mccutcheon, R.. Elemental Methods in Ergodic Ramsey Theory(Lecture Notes in Mathematics, 1722). Springer-Verlag, Berlin, 1999.
[22] Roth, K. F.. Sur quelques ensembles d’entiers. C. R. Math. Acad. Sci. Paris234 (1952), 388-390. · Zbl 0046.04302
[23] Roth, K. F.. On certain sets of integers. J. Lond. Math. Soc. (2)28 (1953), 104-109. · Zbl 0050.04002
[24] Rudin, W.. Fourier Analysis on Groups(Interscience Tracts in Pure and Applied Mathematics, 12). Wiley-Interscience Publishers, New York, 1962. · Zbl 0107.09603
[25] Weiss, B.. Single Orbit Dynamics(CBMS Regional Conference Series in Mathematics, 95). American Mathematical Society, Providence, RI, 2000.
[26] Weyl, H.. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann.77(3) (1916), 313-352. · JFM 46.0278.06
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.