×

Nonnil-FP-injective and nonnil-FP-projective dimensions and nonnil-semihereditary rings. (English) Zbl 07862433

Summary: In this paper, we introduce the concept of nonnil-FP-injective dimension for both modules and rings. We explore the characterization of strongly \(\phi\)-rings that have a nonnil-FP-injective dimension of at most one. We demonstrate that, for a nonnil-coherent, strongly \(\phi\)-ring \(R\), the nonnil-FP-injective dimension of \(R\) corresponds to the supremum of the \(\phi\)-projective dimensions of specific families of \(R\)-modules. We also define self-nonnil-injective rings as \(\phi \)-rings that act as nonnil semi-injective modules over themselves and establish the equivalence between a strongly \(\phi\)-ring \(R\) being \(\phi\)-von Neumann regular and \(R\) being both nonnil-coherent and self-nonnil semi-injective. Furthermore, we extend the notion of semihereditary rings to \(\phi\)-rings, coining the term ‘nonnil-semihereditary’ to describe rings where every finitely generated nonnil ideal is u-\(\phi\)-projective. We provide several characterizations of nonnil-semihereditary rings through various conceptual lenses. Our study also includes an investigation of the transfer of the nonnil-semihereditary property in trivial ring extensions. Additionally, we define the nonnil-FP-projective dimension for modules and rings, showing that for any strongly \(\phi\)-ring, a nonnil-FP-projective dimension of zero is indicative of the ring being nonnil-Noetherian. We also ascertain that, for a strongly \(\phi\)-ring \(R\), its nonnil-FP-projective dimension is the supremum of the NFP-projective dimensions across different families of \(R\)-modules. Lastly, we provide numerous examples to illustrate our results.

MSC:

13A15 Ideals and multiplicative ideal theory in commutative rings
13C05 Structure, classification theorems for modules and ideals in commutative rings
13E15 Commutative rings and modules of finite generation or presentation; number of generators
13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations

References:

[1] Altman, A.B., Kleiman, S.L.: A term of commutative algebra. ResearchGate (2021). https://www.researchgate.net/publication/351211952_A_Term_of_Commutative_Algebra
[2] Anderson, DD; Winders, M., Idealization of a module, J. Commut. Algebra, 1, 1, 3-56, 2009 · Zbl 1194.13002 · doi:10.1216/JCA-2009-1-1-3
[3] Anderson, DF; Badawi, A., On \(\phi \)-Prüfer rings and \(\phi \)-Bézout rings, Houst. J. Math., 30, 2, 331-343, 2004 · Zbl 1089.13513
[4] Badawi, A., On nonnil-Noetherian rings, Commun. Algebra, 31, 4, 1669-1677, 2003 · Zbl 1018.13010 · doi:10.1081/AGB-120018502
[5] Bakkari, C.; Kabbaj, S.; Mahdou, N., Trivial extensions defined by Prüfer conditions, J. Pure Appl. Algebra, 214, 1, 53-60, 2010 · Zbl 1175.13008 · doi:10.1016/j.jpaa.2009.04.011
[6] Bazzoni, S.; Glaz, S., Prüfer Rings. Multiplicative Ideal Theory in Commutative Algebra, 55-72, 2006, New York: Springer, New York · Zbl 1115.13024 · doi:10.1007/978-0-387-36717-0_4
[7] Cartan, H.; Eilenberg, S., Homological Algebra, 1956, Princeton: Princeton University Press, Princeton · Zbl 0075.24305
[8] Chhiti, M.; Mahdou, N.; Tamekkante, M., Self injective amalgamated duplication along an ideal, J. Algebra Appl., 12, 6, 1350033, 2013 · Zbl 1304.13029 · doi:10.1142/S0219498813500333
[9] D’Anna, M.; Fontana, M., An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6, 3, 443-459, 2007 · Zbl 1126.13002 · doi:10.1142/S0219498807002326
[10] Ding, N.; Mao, L., FP-projective dimensions, Commun. Algebra, 33, 4, 1153-1170, 2005 · Zbl 1097.16005 · doi:10.1081/AGB-200053832
[11] El Haddaoui, Y.; Kim, H.; Mahdou, N., On nonnil-coherent modules and non-Noetherian modules, Open Math., 20, 1521-1537, 2022 · Zbl 1508.13002 · doi:10.1515/math-2022-0526
[12] El Haddaoui, Y., Kim, H., Mahdou, N.: On \(\phi -(n,d)\) rings and \(\phi -n\)-coherent rings. Commun. Korean Math. Soc. (to appear)
[13] El Haddaoui, Y., Kim, H., Mahdou, N.: On nonnil-pure theories. Preprint
[14] El Haddaoui, Y.; Mahdou, N., On \(\phi \)-(weak) global dimension, J. Algebra Appl., 2023 · Zbl 07915006 · doi:10.1142/S021949882450169X
[15] El Khalfi, A.; Kim, H.; Mahdou, N., Amalgamated algebras issued from \(\phi \)-chained rings and \(\phi \)-pseudo-valuation rings, Bull. Iran. Math. Soc., 47, 1, 1599-1609, 2021 · Zbl 1475.13015
[16] Enochs, EE, A note on absolutely pure modules, Can. Math. Bull., 19, 3, 361-362, 1976 · Zbl 0346.16020 · doi:10.4153/CMB-1976-054-5
[17] Enochs, EE; Jenda, OMG, Relative Homological Algebra, 2000, Berlin: Walter de Gruyter, Berlin · Zbl 0952.13001 · doi:10.1515/9783110803662
[18] Facchini, A., Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, 1998, Basel: Birkhäuser, Basel · doi:10.1007/978-3-0348-0303-8
[19] Fieldhouse, DJ, Character modules, Comment. Math. Helv., 46, 1, 274-276, 1971 · Zbl 0219.16017 · doi:10.1007/BF02566844
[20] Glaz, S., Commutative Coherent Rings, 1989, Berlin: Springer, Berlin · Zbl 0745.13004 · doi:10.1007/BFb0084570
[21] Glaz, S., The weak dimension of Gaussian rings, Proc. Am. Math. Soc., 133, 2507-2513, 2005 · Zbl 1077.13009 · doi:10.1090/S0002-9939-05-08093-7
[22] Griffin, M., Prüfer rings with zero-divisors, J. Reine Angew. Math., 239, 240, 55-67, 1970 · Zbl 0185.09801
[23] Huckaba, JA, Commutative Rings with Zero Divisors, 1988, New York: Dekker, New York · Zbl 0637.13001
[24] Kabbaj, S., Matlis’ semi-regularity and semi-coherence in trivial ring extensions: a survey, Moroc. J. Algebra Geom. Appl., 1, 1, 1-17, 2022
[25] Kaplansky, I., A characterization of Prüfer rings, J. Indian Math. Soc., 24, 1-2, 279-281, 1960 · Zbl 0118.27202
[26] Khoualdia, B.; Benhissi, A., Nonnil-coherent rings, Beitr. Algebra Geom., 57, 2, 297-305, 2016 · Zbl 1341.13002 · doi:10.1007/s13366-015-0260-8
[27] Kim, H.; Mahdou, N.; Oubouhou, EH, When every ideal is \(\phi -P\)-flat, Hacet. J. Math. Stat., 52, 3, 708-720, 2023 · doi:10.15672/hujms.1148258
[28] Lucas, TG, Some results on Prüfer rings, Pac. J. Math., 124, 2, 333-343, 1986 · Zbl 0601.13008 · doi:10.2140/pjm.1986.124.333
[29] Maddox, BH, Absolutely pure modules, Proc. Am. Math. Soc., 81, 1, 155-158, 1967 · Zbl 0145.04601 · doi:10.1090/S0002-9939-1967-0224649-5
[30] Oneto, AV, A characterization of Prüfer rings, Rev. Union Mat. Argent., 30, 115-117, 1981 · Zbl 0539.13009
[31] Qi, W., Xing, S.Q., Zhang, X.L.: Strongly \(\phi \)-flat modules, strongly nonnil-injective modules and their homology dimensions (2023). doi:10.48550/arXiv.2211.14681
[32] Qi, W.; Zhang, XL, Some remarks on nonnil-coherent rings and \(\phi \)-IF rings, J. Algebra Appl., 21, 11, 2250211, 2022 · Zbl 1497.13013 · doi:10.1142/S0219498822502115
[33] Stenström, B., Coherent rings and FP-injective modules, J. Lond. Math. Soc., 2, 2, 323-329, 1970 · Zbl 0194.06602 · doi:10.1112/jlms/s2-2.2.323
[34] Stenström, B., Rings of Quotients, 1975, Berlin: Springer, Berlin · Zbl 0296.16001 · doi:10.1007/978-3-642-66066-5
[35] Tang, GH; Wang, FG; Zhao, W., On \(\phi \)-von Neumann regular rings, J. Korean Math. Soc., 50, 1, 219-229, 2013 · Zbl 1272.13010 · doi:10.4134/JKMS.2013.50.1.219
[36] Wang, FG; Kim, H., Foundations of Commutative Rings and Their Modules, Algebra and Applications, 22, 2016, Singapore: Springer, Singapore · Zbl 1367.13001
[37] Wang, FG; Zhang, XL; Zhao, W., On \(\phi \)-projective modules and \(\phi \)-Prüfer rings, Commun. Algebra, 48, 7, 3079-3090, 2020 · Zbl 1448.13017 · doi:10.1080/00927872.2020.1729362
[38] Zhang, X.L., Qi, W.: Some remarks on \(\phi \)-Dedekind rings and \(\phi \)-Prüfer rings (2022). doi:10.48550/arXiv.2103.08278
[39] Zhao, W., On \(\phi \)-flat modules and \(\phi \)-Prüfer, J. Korean Math. Soc., 55, 5, 1221-1233, 2018 · Zbl 1397.13016
[40] Zhao, W.; Zhang, XL, On nonnil-injective modules, J. Sichuan Normal Univ., 42, 6, 808-815, 2019 · Zbl 1449.13010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.