×

Transient chimera states emerging from dynamical trapping in chaotic saddles. (English) Zbl 07861892

MSC:

70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI

References:

[1] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5, 380-385 (2002)
[2] Abrams, D.; Strogatz, S., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 174102 (2004) · doi:10.1103/PhysRevLett.93.174102
[3] Laing, C. R.; Chow, C. C., Stationary bumps in networks of spiking neurons, Neural Comput., 13, 1473-1494 (2001) · Zbl 0978.92004 · doi:10.1162/089976601750264974
[4] Laing, C. R., Exact neural fields incorporating gap junctions, SIAM J. Appl. Dyn. Syst., 14, 1899-1929 (2015) · Zbl 1369.92020 · doi:10.1137/15M1011287
[5] Schmidt, H.; Avitabile, D., Bumps and oscillons in networks of spiking neurons, Chaos, 30, 033133 (2020) · doi:10.1063/1.5135579
[6] Franović, I.; Omel’chenko, O. E.; Wolfrum, M., Bumps, chimera states, and Turing patterns in systems of coupled active rotators, Phys. Rev. E, 104, L052201 (2021) · doi:10.1103/PhysRevE.104.L052201
[7] Panaggio, M. J.; Abrams, D. M., Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, R67-R87 (2015) · Zbl 1392.34036 · doi:10.1088/0951-7715/28/3/R67
[8] Schöll, E., Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics, Eur. Phys. J. Spec. Top., 225, 891-919 (2016) · doi:10.1140/epjst/e2016-02646-3
[9] Kemeth, F. P.; Haugland, S. W.; Schmidt, L.; Kevrekidis, I. G.; Krischer, K., A classification scheme for chimera states, Chaos, 26, 094814 (2016) · doi:10.1063/1.4959804
[10] Omel’chenko, O. E., The mathematics behind chimera states, Nonlinearity, 31, R121-R164 (2018) · Zbl 1395.34045 · doi:10.1088/1361-6544/aaaa07
[11] Parastesh, F.; Jafari, S.; Azarnoush, H.; Shahriari, Z.; Wang, Z.; Boccaletti, S.; Perc, M., Chimeras, Phys. Rep., 898, 1-114 (2021) · Zbl 1490.34044 · doi:10.1016/j.physrep.2020.10.003
[12] Wolfrum, M.; Omel’chenko, O. E.; Yanchuk, S.; Maistrenko, Y. L., Spectral properties of chimera states, Chaos, 21, 013112 (2011) · Zbl 1345.34067 · doi:10.1063/1.3563579
[13] Wolfrum, M.; Omel’chenko, O. E., Chimera states are chaotic transients, Phys. Rev. E, 84, 015201 (2011) · doi:10.1103/PhysRevE.84.015201
[14] Omel’chenko, O. E.; Wolfrum, M.; Maistrenko, Y. L., Chimera states as chaotic spatiotemporal patterns, Phys. Rev. E, 81, 065201 (2010) · doi:10.1103/PhysRevE.81.065201
[15] Omelchenko, I.; Maistrenko, Y.; Hövel, P.; Schöll, E., Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett., 106, 234102 (2011) · doi:10.1103/PhysRevLett.106.234102
[16] Gu, C.; St-Yves, G.; Davidsen, J., Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett., 111, 134101 (2013) · doi:10.1103/PhysRevLett.111.134101
[17] Tinsley, M. R.; Nkomo, S.; Showalter, K., Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys., 8, 662-665 (2012) · doi:10.1038/nphys2371
[18] Nkomo, S.; Tinsley, M. R.; Showalter, K., Chimera states in populations of nonlocally coupled chemical oscillators, Phys. Rev. Lett., 110, 244102 (2013) · doi:10.1103/PhysRevLett.110.244102
[19] Totz, J. F.; Rode, J.; Tinsley, M. R.; Showalter, K.; Engel, H., Spiral wave chimera states in large populations of coupled chemical oscillators, Nat. Phys., 14, 282-285 (2018) · doi:10.1038/s41567-017-0005-8
[20] Wickramasinghe, M.; Kiss, I. Z., Spatially organized dynamical states in chemical oscillator networks: Synchronization, dynamical differentiation, and chimera patterns, PLoS One, 8, e80586 (2013) · doi:10.1371/journal.pone.0080586
[21] Schmidt, L.; Schönleber, K.; Krischer, K.; García-Morales, V., Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling, Chaos, 24, 013102 (2014) · doi:10.1063/1.4858996
[22] Martens, E. A.; Thutupalli, S.; Fourriere, A.; Hallatschek, O., Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. U.S.A., 110, 10563-10567 (2013) · doi:10.1073/pnas.1302880110
[23] Kapitaniak, T.; Kuzma, P.; Wojewoda, J.; Czolczynski, K.; Maistrenko, Y., Imperfect chimera states for coupled pendula, Sci. Rep., 4, 6379 (2014) · doi:10.1038/srep06379
[24] Hagerstrom, A. M.; Murphy, T. E.; Roy, R.; Hövel, P.; Omelchenko, I.; Schöll, E., Experimental observation of chimeras in coupled-map lattices, Nat. Phys., 8, 658-661 (2012) · doi:10.1038/nphys2372
[25] Dudkowski, D.; Maistrenko, Y.; Kapitaniak, T., Different types of chimera states: An interplay between spatial and dynamical chaos, Phys. Rev. E, 90, 032920 (2014) · doi:10.1103/PhysRevE.90.032920
[26] Dudkowski, D.; Maistrenko, Y.; Kapitaniak, T., Occurrence and stability of chimera states in coupled externally excited oscillators, Chaos, 26, 116306 (2016) · doi:10.1063/1.4967386
[27] Mishra, A.; Hens, C.; Bose, M.; Roy, P. K.; Dana, S. K., Chimeralike states in a network of oscillators under attractive and repulsive global coupling, Phys. Rev. E, 92, 062920 (2015) · doi:10.1103/PhysRevE.92.062920
[28] Clerc, M. G.; A. Ferré, S. C. M.; García-Ñustes, M. A.; Rojas, R. G., Chimera-type states induced by local coupling, Phys. Rev. E, 93, 052204 (2016) · doi:10.1103/PhysRevE.93.052204
[29] Skufca, J. D.; Yorke, J. A.; Eckhardt, B., Edge of chaos in a parallel shear flow, Phys. Rev. Lett., 96, 174101 (2006) · doi:10.1103/PhysRevLett.96.174101
[30] Eckhardt, B.; Schneider, T. M.; Hof, B.; Westerweel, J., Turbulence transition in pipe flow, Annu. Rev. Fluid Mech., 39, 447-468 (2007) · Zbl 1296.76062 · doi:10.1146/annurev.fluid.39.050905.110308
[31] Rempel, E. L.; Chian, A. C.-L., Origin of transient and intermittent dynamics in spatiotemporal chaotic systems, Phys. Rev. Lett., 98, 014101 (2007) · doi:10.1103/PhysRevLett.98.014101
[32] Joglekar, M.; Feudel, U.; Yorke, J. A., Geometry of the edge of chaos in a low-dimensional turbulent shear flow model, Phys. Rev. E, 91, 052903 (2015) · doi:10.1103/PhysRevE.91.052903
[33] Ansmann, G.; Lehnertz, K.; Feudel, U., Self-induced switchings between multiple space-time patterns on complex networks of excitable units, Phys. Rev. X, 6, 011030 (2016) · doi:10.1103/PhysRevX.6.011030
[34] Lilienkamp, T.; Christoph, J.; Parlitz, U., Features of chaotic transients in excitable media governed by spiral and scroll waves, Phys. Rev. Lett., 119, 054101 (2017) · doi:10.1103/PhysRevLett.119.054101
[35] Lucarini, V.; Bódai, T., Transitions across melancholia states in a climate model: Reconciling the deterministic and stochastic points of view, Phys. Rev. Lett., 122, 158701 (2019) · doi:10.1103/PhysRevLett.122.158701
[36] Lai, Y.-C.; Tél, T., Transient Chaos: Complex Dynamics on Finite Time Scales (2011), Springer Science & Business Media · Zbl 1218.37005
[37] Crutchfield, J. P.; Kaneko, K., Are attractors relevant to turbulence?, Phys. Rev. Lett., 60, 2715-2718 (1988) · doi:10.1103/PhysRevLett.60.2715
[38] Lai, Y.-C.; Winslow, R. L., Geometric properties of the chaotic saddle responsible for supertransients in spatiotemporal chaotic systems, Phys. Rev. Lett., 74, 5208-5211 (1995) · doi:10.1103/PhysRevLett.74.5208
[39] Medeiros, E. S.; Medrano-T, R. O.; Caldas, I. L.; Feudel, U., Boundaries of synchronization in oscillator networks, Phys. Rev. E, 98, 030201 (2018) · doi:10.1103/PhysRevE.98.030201
[40] Medeiros, E. S.; Medrano-T, R. O.; Caldas, I. L.; Tél, T.; Feudel, U., State-dependent vulnerability of synchronization, Phys. Rev. E, 100, 052201 (2019) · doi:10.1103/PhysRevE.100.052201
[41] Medeiros, E. S.; Medrano-T, R. O.; Caldas, I. L.; Feudel, U., The impact of chaotic saddles on the synchronization of complex networks of discrete-time units, J. Phys.: Complex., 2, 035002 (2021) · doi:10.1088/2632-072X/abedc2
[42] Pecora, L.; Carroll, T.; Johnson, G.; Mar, D.; Fink, K. S., Synchronization stability in coupled oscillator arrays: Solution for arbitrary configurations, Int. J. Bifurcat. Chaos, 10, 273-290 (2000) · Zbl 1090.34542 · doi:10.1142/S0218127400000189
[43] Mitra, C.; Choudhary, A.; Sinha, S.; Kurths, J.; Donner, R. V., Multiple-node basin stability in complex dynamical networks, Phys. Rev. E, 95, 032317 (2017) · doi:10.1103/PhysRevE.95.032317
[44] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D, 16, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[45] Wolfrum, M.; Omel’chenko, O. E., Chimera states are chaotic transients, Phys. Rev. E, 84, 015201 (2011) · doi:10.1103/PhysRevE.84.015201
[46] Lilienkamp, T.; Parlitz, U., Susceptibility of transient chimera states, Phys. Rev. E, 102, 032219 (2020) · doi:10.1103/PhysRevE.102.032219
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.