×

Thurston’s asymmetric metric on the space of singular flat metrics with a fixed quadrangulation. (English) Zbl 07861331

Summary: Consider a compact surface equipped with a fixed quadrangulation. One may identify each quadrangle on the surface with a Euclidean rectangle to obtain a singular flat metric on the surface with conical singularities. We call such a singular flat metric a rectangular structure. We study a metric on the space of unit area rectangular structures which is analogous to Thurston’s asymmetric metric on the Teichmüller space of a surface of finite type. We prove that the distance between two rectangular structures is equal to the logarithm of the maximum of ratios of edges of these rectangular structures. We give a sufficient condition for a path between two points of the this Teichmüller space to be geodesic and we prove that any two points of this space can be joined by a geodesic. We also prove that this metric is Finsler and give a formula for the infinitesimal weak norm on the tangent space of each point. We identify the space of unit area rectangular structures with a submanifold of a Euclidean space and we show that the subspace topology and the topology induced by the metric we introduced coincide. We show that the space of unit area rectangular structures on a surface with a fixed quadrangulation is in general not complete.

MSC:

32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
51F99 Metric geometry
57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)
57M50 General geometric structures on low-dimensional manifolds

References:

[1] V. Alberge and A. Papadopoulos, A commentary on Teichmüller’s paper “Vollständige Lösung einer Extremalaufgabe der quasikonformen Abbildung”. In Handbook of Teich-müller theory. Vol. VI, pp. 561-567, IRMA Lect. Math. Theor. Phys. 27, European Mathematical Society, Zürich, 2016. Zbl 1345.30055 MR 3618202 · Zbl 1345.30055 · doi:10.4171/161-1/20
[2] A. Belkhirat, A. Papadopoulos and M. Troyanov, Thurston’s weak metric on the Teichmüller space of the torus. Trans. Amer. Math. Soc. 357 (2005), no. 8, 3311-3324. Zbl 1088.30047 MR 2135749 · Zbl 1088.30047 · doi:10.1090/S0002-9947-05-03735-9
[3] H. Busemann, Recent synthetic differential geometry. Ergeb. Math. Grenzgeb. 54, Springer, New York-Berlin, 1970. Zbl 0194.53701 MR 0296877 · Zbl 0194.53701 · doi:10.1007/978-3-642-88057-5
[4] D. Dumas, A. Lenzhen, K. Rafi and J. Tao, Coarse and fine geometry of the Thurston metric. Forum Math. Sigma 8 (2020), article no. e28. Zbl 1475.30107 MR 4108919 · Zbl 1475.30107 · doi:10.1017/fms.2020.3
[5] H. Grötzsch, Über möglichst konforme Abbildungen von schlichten Bereichen. Leipz. Ber. 84 (1932), 114-120. Zbl 0005.06901 · Zbl 0005.06901
[6] -On closest-to-conformal mappings. In Handbook of Teichmüller theory. Vol. VII, pp. 387-392, IRMA Lect. Math. Theor. Phys. 30, European Mathematical Society, Zürich, 2020. Zbl 1446.30037 MR 4321184 · Zbl 1446.30037
[7] F. Guéritaud and F. Kassel, Maximally stretched laminations on geometrically finite hyperbolic manifolds. Geom. Topol. 21 (2017), no. 2, 693-840. Zbl 1472.30017 MR 3626591 · Zbl 1472.30017 · doi:10.2140/gt.2017.21.693
[8] Y. Huang and A. Papadopoulos, Optimal Lipschitz maps on one-holed tori and the Thurston metric theory of Teichmüller space. Geom. Dedicata 214 (2021), 465-488. Zbl 1478.32037 MR 4308288 · Zbl 1478.32037 · doi:10.1007/s10711-021-00624-z
[9] H. Miyachi, K. Ohshika and A. Papadopoulos, Tangent spaces of the Teichmüller space of the torus with Thurston’s weak metric. Ann. Fenn. Math. 47 (2022), no. 1, 325-334. Zbl 1489.30047 MR 4373661 · Zbl 1489.30047 · doi:10.54330/afm.113702
[10] A. Papadopoulos, Ideal triangles, hyperbolic surfaces and the Thurston metric on Teich-müller space. In Moduli spaces and locally symmetric spaces, pp. 135-181, Surv. Mod. Math., Higher Education Press, Beijng; International Press, Boston, 2021. Zbl 1482.30114
[11] A. Papadopoulos and W. Su, On the Finsler structure of Teichmüller’s metric and Thurston’s metric. Expo. Math. 33 (2015), no. 1, 30-47. Zbl 1308.32017 MR 3310926 · Zbl 1308.32017 · doi:10.1016/j.exmath.2013.12.007
[12] A. Papadopoulos and M. Troyanov, Weak Finsler structures and the Funk weak metric. Math. Proc. Cambridge Philos. Soc. 147 (2009), no. 2, 419-437. Zbl 1198.53084 MR 2525935 · Zbl 1198.53084 · doi:10.1017/S0305004109002461
[13] İ. Sağlam, From Euclidean triangles to the hyperbolic plane. Expo. Math. 40 (2022), no. 2, 249-253. Zbl 1490.51016 MR 4432218 · Zbl 1490.51016 · doi:10.1016/j.exmath.2021.10.003
[14] İ. Sağlam and A. Papadopoulos, Minimal stretch maps between Euclidean triangle. 2021, arXiv:2107.00937v1.
[15] W. Su, Problems on the Thurston metric. In Handbook of Teichmüller theory. Vol. V, pp. 55-72, IRMA Lect. Math. Theor. Phys. 26, European Mathematical Society, Zürich, 2016. Zbl 1344.30043 MR 3497293 · Zbl 1344.30043 · doi:10.4171/160-1/3
[16] O. Teichmüller, Extremale quasikonforme Abbildungen und quadratische Differentiale. Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1939 (1940), no. 22. Zbl 0024.33304 MR 0003242 · JFM 66.1252.01
[17] -Vollständige Lösung einer Extremalaufgabe der quasikonformen Abbildung. Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1941 (1941), no. 5. Zbl 0026.01402 MR 0017802
[18] -Complete solution of an extremal problem of the quasiconformal mapping. In Handbook of Teichmüller theory. Vol. VI, pp. 547-560, IRMA Lect. Math. Theor. Phys. 27, European Mathematical Society, Zürich, 2016. MR 3618201 · Zbl 1345.30065 · doi:10.4171/161-1/19
[19] -Extremal quasiconformal mappings and quadratic differentials. In Handbook of Teich-müller theory. Vol. V, pp. 321-483, IRMA Lect. Math. Theor. Phys. 26, European Mathematical Society, Zürich, 2016. Zbl 1344.30044 MR 3497300 · Zbl 1344.30044
[20] W. P. Thurston, Minimal stretch maps between hyperbolic surfaces. In Collected works of William P. Thurston with commentary. Vol. I. Foliations, surfaces and differential geometry, pp. 533-585, American Mathematical Society, Providence, RI, 2022. Zbl 1527.57001 MR 4554454 · Zbl 1527.57001
[21] F. Wolenski, Thurston’s metric on Teichmüller space of semi-translation surfaces. 2018, arXiv:1808.09734v1. (Reçu le 10 décembre 2021)
[22] İsmail Sağlam, Department of Aerospace Engineering, Adana Alparslan Turkes Science and Technology University, Balcalı Mah. Güney Kampüs 10 Sokak No:1U, Sarıçam, Adana, Turkey; Institut de Recherche Mathematique Avancée, CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France; e-mail: isaglam@atu.edu.tr
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.