×

A two-step accelerated Landweber-type iteration regularization algorithm for sparse reconstruction of electrical impedance tomography. (English) Zbl 07861196


MSC:

92C55 Biomedical imaging and signal processing
65J22 Numerical solution to inverse problems in abstract spaces
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] CheneyM, IsaacsonD, NewellJC. Electrical impedance tomography. SIAM Rev. 1999;41:85‐101. · Zbl 0927.35130
[2] BorceaL. Electrical impedance tomography. Inverse Probl. 2002;18:99‐136. · Zbl 1031.35147
[3] BrownBH. Electrical impedance tomography (EIT): A review. J Med Eng Technol. 2003;27(3):97‐108.
[4] LionheartWRB. EIT Reconstruction algorithms: pitfalls, challenges and recent developments. Physiol Measurement. 2004;25(1):125‐142.
[5] AbdelsalamSI, ZaherAZ. Leveraging elasticity to uncover the role of rabinowitsch suspension through a wavelike conduit: Consolidated blood suspension application. Mathematics. 2021;9(16):2008.
[6] SantosaF, VogeliusM. A backprojection algorithm for electrical impedance imaging. SIAM J Appl Math. 1990;50(1):216‐243. · Zbl 0691.65087
[7] LohWW, DickinFJ. Improved modified Newton‐Raphson algorithm for electrical impedance tomography. Electron Lett. 1996;32(3):206‐207.
[8] VauhkonenM, VadaszD. Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans Med Imaging. 1998;17(2):285‐93.
[9] BorsicA, GrahamBM, AdlerA, et al. In vivo impedance imaging with total variation regularization. IEEE Trans Med Imaging. 2010;29(1):44‐54.
[10] JinB, KhanT, MaassP. A reconstruction algorithm for electrical impedance tomography based on sparsity regularization. Int J Numer Methods Eng. 2012;89(3):337‐353. · Zbl 1242.78016
[11] WangJ, MaJ, HanB, et al. Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography. Signal Process. 2012;92(12):2952‐2961.
[12] PhamMQ. Reconstructing conductivity coefficients based on sparsity regularization and measured data in electrical impedance tomography. Inverse Probl Sci Eng. 2015;23(8):1366‐1387. · Zbl 1326.92048
[13] GardeH, KnudsenK. Sparsity prior for electrical impedance tomography with partial data. Inverse Probl Sci Eng. 2016;24(3):524‐541.
[14] YangYJ, JiaJB. An image reconstruction algorithm for electrical impedance tomography using adaptive group sparsity constraint. IEEE Trans Instrument Measure. 2017;66(9):2295‐2305.
[15] LiJ, YueSH, DingM, et al. Adaptive Lp regularization for electrical impedance tomography. IEEE Sensors J. 2019;19(24):12297‐12305.
[16] WangJ, HanB, WangW. Elastic‐net regularization for nonlinear electrical impedance tomography with a splitting approach. Applicable Anal. 2019;98(12):2201‐2217. · Zbl 1418.65056
[17] HuskaM, LazzaroD, MorigiS, et al. Spatially‐adaptive variational reconstructions for linear inverse electrical impedance tomography.J Sci Comput. 2020;84(3):46. · Zbl 07246751
[18] ShiY, KongX, WangM, et al. A non‐convex L1‐norm penalty‐based total generalized variation model for reconstruction of conductivity distribution. IEEE Sensors J. 2020;20(14):8137‐8146.
[19] WangJ. Non‐convex Lp regularization for sparse reconstruction of electrical impedance tomography. Inverse Probl Sci Eng. 2021;29(7):1032‐1053. · Zbl 1472.35369
[20] WangH, ChaoW, YinW. A pre‐iteration method for the inverse problem in electrical impedance tomography. IEEE Trans Instrument Measurement. 2004;53(4):1093‐1096.
[21] KimBS, KimJH, KimS, et al. Image reconstruction using modified iterative Landweber method in electrical impedance tomography. Syst Control. 2012;49(4):36‐44.
[22] KimBS, KimS, KimKY. Development of novel on‐line Landweber algorithm for image reconstruction in electrical impedance tomography. J Inst Electron Inform Eng. 2012;49(9):293‐298.
[23] WangJ, HanB. Image reconstruction based on homotopy perturbation inversion method for electrical impedance tomography. J Appl Math. 2013;2013(11):135‐148. · Zbl 1397.65241
[24] YeJ, WangH, YangW. A sparsity reconstruction algorithm for electrical capacitance tomography based on modified Landweber iteration. Measurement Sci Technol. 2014;25(11):115402.
[25] KimBS, KimKY. Resistivity imaging of binary mixture using weighted Landweber method in electrical impedance tomography. Flow Meas Instrum. 2017;53:39‐48.
[26] WangJ, HanB. Application of a class of iterative algorithms and their accelerations to Jacobian‐based linearized EIT image reconstruction. Inverse Probl Sci Eng. 2021;29(8):1108‐1126. · Zbl 1471.94005
[27] LiuS, JiaJ, ZhangYD, et al. Image reconstruction in electrical impedance tomography based on structure‐aware sparse Bayesian learning. IEEE Trans Med Imaging. 2018;37(9):2090‐2102.
[28] AhmadS, StraussT, KupisS, et al. Comparison of statistical inversion with iteratively regularized Gauss Newton method for image reconstruction in electrical impedance tomography. Appl Math Comput. 2019;358(1):436‐448. · Zbl 1428.78036
[29] FanYW, YingLX. Solving electrical impedance tomography with deep learning. J Comput Phys. 2019;404:109119. · Zbl 1453.65041
[30] LiuD, SmylD, DuJ. A parametric level set‐based approach to difference imaging in electrical impedance tomography. IEEE Trans Med Imaging. 2019;38(1):145‐155.
[31] LiuD, GuD, SmylD, et al. B‐spline level set method for shape reconstruction in electrical impedance tomography. IEEE Trans Med Imaging. 2020;39(6):1917‐1929.
[32] Fernandez‐FuentesX, MeraD, GomezA, et al. Towards a fast and accurate EIT inverse problem solver: a machine learning approach. Electronics. 2018;7(12):422.
[33] SymlD, LiuD. Optimizing electrode positions in 2‐D electrical impedance tomography using deep learning. IEEE Trans Instrument Measurement. 2020;69(9):6030‐6044.
[34] MartinsT, SatoAK, MouraF, et al. A review of electrical impedance tomography in lung applications: Theory and algorithms for absolute images. Ann Rev Control. 2019;48:442‐471.
[35] KhanTA, LingSH. Review on electrical impedance tomography: artificial intelligence methods and its applications. Algorithms. 2019;12(5):88. · Zbl 1461.94011
[36] LandweberL. An iteration formula for Fredholm integral equations of the first kind. Am J Math. 1951;73(3):615‐624. · Zbl 0043.10602
[37] SomersaloE, CheneyM, IsaacsonD. Existence and uniqueness for electrode models for electric current computed tomography. SIAM J Appl Math. 1992;52(4):1023‐1040. · Zbl 0759.35055
[38] VauhkonenM, KaipioJP, SomersaloE, et al. Electrical impedance tomography with basis constraints. Inverse Probl. 1997;13(2):523‐530. · Zbl 0872.35130
[39] WooEJ, HuaP, WebsterJG, et al. Finite‐element method in electrical impedance tomography. Med Biol Eng Comput. 1994;32(5):530‐536.
[40] YorkeyTJ, WebsterJG, TompkinsWJ. Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans Biomed Eng. 1987;34(11):843‐852.
[41] ScherzerO. A convergence analysis of a method of steepest descent and a two‐step algorithm for nonlinear ill‐posed problems. Numer Funct Anal Optim. 1996;17(1‐2):197‐214. · Zbl 0852.65048
[42] BotRI, HeinT. Iterative regularization with a general penalty term-theory and application to L^1 and TV regularization. Inverse Probl. 2012;28(10):104010. · Zbl 1269.47054
[43] NesterovY. A method of solving a convex programming problem with convergence rate O(1/K^2). Soviet Math Doklady. 1983;27:372‐376. · Zbl 0535.90071
[44] NeubauerA. On Nesterov acceleration for Landweber iteration of linear ill‐posed problems. J Inverse Ill‐Posed Probl. 2017;25(3):381‐390. · Zbl 1367.47017
[45] VauhkonenM, LionheartWR, HeikkinenLM, et al. A MATLAB package for the EIDORS project to reconstruct two‐dimensional EIT images. Physiol Meas. 2001;22(1):107‐111.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.