×

Topologically induced suppression of explosive synchronization. (English) Zbl 07858553

MSC:

34D06 Synchronization of solutions to ordinary differential equations
05C82 Small world graphs, complex networks (graph-theoretic aspects)
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations

Software:

CONTEST; testmatrix

References:

[1] Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Phys. Rep., 469, 3, 93-153 (2008) · doi:10.1016/j.physrep.2008.09.002
[2] Strogatz, S. H., Sync: How Order Emerges From Chaos in the Universe, Nature, and Daily Life (2012), Hachette: Hachette, London
[3] Gómez-Gardenes, J.; Gómez, S.; Arenas, A.; Moreno, Y., Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett., 106, 12, 128701 (2011) · doi:10.1103/PhysRevLett.106.128701
[4] Leyva, I.; Sevilla-Escoboza, R.; Buldú, J. M.; Sendiña-Nadal, I.; Gómez-Gardenes, J.; Arenas, A.; Moreno, Y.; Gómez, S.; Jaimes-Reategui, R.; Boccaletti, S., Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett., 108, 16, 168702 (2012) · doi:10.1103/PhysRevLett.108.168702
[5] D’Souza, R. M.; Gómez-Gardenes, J.; Nagler, J.; Arenas, A., Explosive phenomena in complex networks, Adv. Phys., 68, 3, 123-223 (2019) · doi:10.1080/00018732.2019.1650450
[6] Boccaletti, S.; Almendral, J. A.; Guan, S.; Leyva, I.; Liu, Z.; Sendiña-Nadal, I.; Wang, Z.; Zou, Y., Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization, Phys. Rep., 660, 1-94 (2016) · Zbl 1359.34048 · doi:10.1016/j.physrep.2016.10.004
[7] Arola-Fernández, L.; Faci-Lázaro, S.; Skardal, P. S.; Boghiu, E. C.; Gómez-Gardeñes, J.; Arenas, A., Emergence of explosive synchronization bombs in networks of oscillators, Commun. Phys., 5, 1, 264 (2022) · doi:10.1038/s42005-022-01039-2
[8] Leyva, I.; Navas, A.; Sendiña-Nadal, I.; Almendral, J. A.; Buldú, J. M.; Zanin, M.; Papo, D.; Boccaletti, S., Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep., 3, 1, 1281 (2013) · doi:10.1038/srep01281
[9] Rodrigues, F. A.; Peron, T. K. D.; Ji, P.; Kurths, J., The Kuramoto model in complex networks, Phys. Rep., 610, 1-98 (2016) · Zbl 1357.34089 · doi:10.1016/j.physrep.2015.10.008
[10] Zhang, X.; Hu, X.; Kurths, J.; Liu, Z. Z., Explosive synchronization in a general complex network, Phys. Rev. E, 88, 1, 010802 (2013) · doi:10.1103/PhysRevE.88.010802
[11] Zou, Y.; Pereira, T.; Small, M.; Liu, Z.; Kurths, J., Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett., 112, 11, 114102 (2014) · doi:10.1103/PhysRevLett.112.114102
[12] Skardal, P. S.; Sun, J.; Taylor, D.; Restrepo, J. G., Effects of degree-frequency correlations on network synchronization: Universality and full phase-locking, Europhys. Lett., 101, 2, 20001 (2013) · doi:10.1209/0295-5075/101/20001
[13] Estrada, E., ‘Hubs-repelling’ Laplacian and related diffusion on graphs/networks, Linear Algebra Appl., 596, 256-280 (2020) · Zbl 1435.05127 · doi:10.1016/j.laa.2020.03.012
[14] Estrada, E.; Mugnolo, D., Hubs-biased resistance distances on graphs and networks, J. Math. Anal. Appl., 507, 1, 125728 (2022) · Zbl 1478.05039 · doi:10.1016/j.jmaa.2021.125728
[15] Gambuzza, L. V.; Frasca, M.; Estrada, E., Hubs-attracting Laplacian and related synchronization on networks, SIAM J. Appl. Dyn. Syst., 19, 2, 1057-1079 (2020) · Zbl 1439.05210 · doi:10.1137/19M1287663
[16] Miranda, M.; Estrada, E., Degree-biased advection-diffusion on undirected graphs/networks, Math. Model. Nat. Phenom., 17, 30 (2022) · Zbl 1511.05148 · doi:10.1051/mmnp/2022034
[17] Schnitzler, A.; Gross, J., Normal and pathological oscillatory communication in the brain, Nat. Rev. Neurosci., 6, 4, 285-296 (2005) · doi:10.1038/nrn1650
[18] Kim, M.; Mashour, G. A.; Moraes, S. B.; Vanini, G.; Tarnal, V.; Janke, E.; Hudetz, A. G.; Lee, U., Functional and topological conditions for explosive synchronization develop in human brain networks with the onset of anesthetic-induced unconsciousness, Front. Comput. Neurosci., 10, 1 (2016) · doi:10.3389/fncom.2016.00001
[19] Hammond, C.; Bergman, H.; Brown, P., Pathological synchronization in Parkinson’s disease: Networks, models and treatments, Trends Neurosci., 30, 7, 357-364 (2007) · doi:10.1016/j.tins.2007.05.004
[20] Jiruska, P.; De Curtis, M.; Jefferys, J. G.; Schevon, C. A.; Schiff, S. J.; Schindler, K., Synchronization and desynchronization in epilepsy: Controversies and hypotheses, J. Physiol., 591, 4, 787-797 (2013) · doi:10.1113/jphysiol.2012.239590
[21] Wang, Z.; Tian, C.; Dhamala, M.; Liu, Z., A small change in neuronal network topology can induce explosive synchronization transition and activity propagation in the entire network, Sci. Rep., 7, 1, 561 (2017) · doi:10.1038/s41598-017-00697-5
[22] Friedman, E. B.; Sun, Y.; Moore, J. T.; Hung, H. T.; Meng, Q. C.; Perera, P.; Joiner, W. J.; Thomas, S. A.; Eckenhoff, R. G.; Sehgal, A.; Kelz, M. B., A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: Evidence for neural inertia, PLoS One, 5, 7, e11903 (2010) · doi:10.1371/journal.pone.0011903
[23] Joiner, W. J.; Friedman, E. B.; Hung, H. T.; Koh, K.; Sowcik, M.; Sehgal, A.; Kelz, M. B., Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness, PLoS Genet., 9, 9, e1003605 (2013) · doi:10.1371/journal.pgen.1003605
[24] Kelz, M. B.; Sun, Y.; Chen, J.; Cheng Meng, Q.; Moore, J. T.; Veasey, S. C.; Dixon, S.; Thornton, M.; Funato, H.; Yanagisawa, M., An essential role for orexins in emergence from general anesthesia, Proc. Natl. Acad. Sci. U.S.A., 105, 4, 1309 (2008) · doi:10.1073/pnas.0707146105
[25] Mashour, G. A.; Frank, L.; Batthyany, A.; Kolanowski, A. M.; Nahm, M.; Schulman-Green, D.; Greyson, B.; Pakhomov, S.; Karlawish, J.; Shah, R. C., Paradoxical lucidity: A potential paradigm shift for the neurobiology and treatment of severe dementias, Alzheimer Dementia, 15, 8, 1107-1114 (2019) · doi:10.1016/j.jalz.2019.04.002
[26] Kaplan, C. M.; Harris, R. E.; Lee, U.; DaSilva, A. F.; Mashour, G. A.; Harte, S. E., Targeting network hubs with noninvasive brain stimulation in patients with fibromyalgia, Pain, 161, 1, 43-46 (2020) · doi:10.1097/j.pain.0000000000001696
[27] Dai, X.; Li, X.; Gutiérrez, R.; Guo, H.; Jia, D.; Perc, M.; Manshour, P.; Wang, Z.; Boccaletti, S., Explosive synchronization in populations of cooperative and competitive oscillators, Chaos, Solitons Fractals, 132, 109589 (2020) · Zbl 1434.34041 · doi:10.1016/j.chaos.2019.109589
[28] Jalan, S.; Rathore, V.; Kachhvah, A. D.; Yadav, A., Inhibition-induced explosive synchronization in multiplex networks, Phys. Rev. E, 99, 6, 062305 (2019) · doi:10.1103/PhysRevE.99.062305
[29] Zhang, X.; Guan, S.; Zou, Y.; Chen, X.; Liu, Z., Suppressing explosive synchronization by contrarians, Europhys. Lett., 113, 2, 28005 (2016) · doi:10.1209/0295-5075/113/28005
[30] Danziger, M. M.; Moskalenko, O. I.; Kurkin, S. A.; Zhang, X.; Havlin, S.; Boccaletti, S., Explosive synchronization coexists with classical synchronization in the Kuramoto model, Chaos, 26, 6, 065307 (2016) · Zbl 1374.34210 · doi:10.1063/1.4953345
[31] Jiang, S.; Fang, W.; Tang, S.; Pei, S.; Yan, S.; Zheng, Z., Effects of the frequency-degree correlation on local synchronization in complex networks, J. Korean Phys. Soc., 67, 2, 389-394 (2015) · doi:10.3938/jkps.67.389
[32] Bergner, A.; Frasca, M.; Sciuto, G.; Buscarino, A.; Ngamga, E. J.; Fortuna, L.; Kurths, J., Remote synchronization in star networks, Phys. Rev. E, 85, 2, 026208 (2012) · doi:10.1103/PhysRevE.85.026208
[33] Estrada, E., Point scattering: A new geometric invariant with applications from (nano) clusters to biomolecules, J. Comput. Chem., 28, 4, 767-777 (2007) · doi:10.1002/jcc.20541
[34] Jiang, S.; Tang, S.; Pei, S.; Fang, W.; Zheng, Z., Low dimensional behavior of explosive synchronization on star graphs, J. Stat. Mech.: Theory Exp., 2015, 10, P10007 (2015) · Zbl 1456.82141 · doi:10.1088/1742-5468/2015/10/P10007
[35] Vlasov, V.; Zou, Y.; Pereira, T., Explosive synchronization is discontinuous, Phys. Rev. E, 92, 1, 012904 (2015) · doi:10.1103/PhysRevE.92.012904
[36] Liu, W.; Wu, Y.; Xiao, J.; Zhan, M., Effects of frequency-degree correlation on synchronization transition in scale-free networks, Europhys. Lett., 101, 3, 38002 (2013) · doi:10.1209/0295-5075/101/38002
[37] Watanabe, S.; Strogatz, S. H., Constants of motion for superconducting Josephson arrays, Phys. D, 74, 3-4, 197-253 (1994) · Zbl 0812.34043 · doi:10.1016/0167-2789(94)90196-1
[38] Ott, E.; Antonsen, T. M., Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18, 3, 037113 (2008) · Zbl 1309.34058 · doi:10.1063/1.2930766
[39] Xu, C.; Gao, J.; Sun, Y.; Huang, X.; Zheng, Z., Explosive or continuous: Incoherent state determines the route to synchronization, Sci. Rep., 5, 1, 12039 (2015) · doi:10.1038/srep12039
[40] Barabási, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[41] Taylor, A.; Higham, D. J., CONTEST: A controllable test matrix toolbox for MATLAB, ACM Trans. Math. Softw. (TOMS), 35, 4, 1-17 (2009) · doi:10.1145/1462173.1462175
[42] Estrada, E., Combinatorial study of degree assortativity in networks, Phys. Rev. E, 84, 4, 047101 (2011) · doi:10.1103/PhysRevE.84.047101
[43] Newman, M. E., Assortative mixing in networks, Phys. Rev. Lett., 89, 20, 208701 (2002) · doi:10.1103/PhysRevLett.89.208701
[44] Lee, U.; Kim, M.; Lee, K.; Kaplan, C. M.; Clauw, D. J.; Kim, S.; Mashour, G. A.; Harris, R. E., Functional brain network mechanism of hypersensitivity in chronic pain, Sci. Rep., 8, 1, 243 (2018) · doi:10.1038/s41598-017-18657-4
[45] Eguiluz, V. M.; Chialvo, D. R.; Cecchi, G. A.; Baliki, M.; Apkarian, A. V., Scale-free brain functional networks, Phys. Rev. Lett., 94, 1, 018102 (2005) · doi:10.1103/PhysRevLett.94.018102
[46] Kaiser, M.; Martin, R.; Andras, P.; Young, M. P., Simulation of robustness against lesions of cortical networks, Eur. J. Neurosci., 25, 10, 3185-3192 (2007) · doi:10.1111/j.1460-9568.2007.05574.x
[47] Münch, T. A.; Werblin, F. S., Symmetric interactions within a homogeneous starburst cell network can lead to robust asymmetries in dendrites of starburst amacrine cells, J. Neurophysiol., 96, 1, 471-477 (2006) · doi:10.1152/jn.00628.2005
[48] Beaulieu-Laroche, L.; Toloza, E. H.; Brown, N. J.; Harnett, M. T., Widespread and highly correlated somato-dendritic activity in cortical layer 5 neurons, Neuron, 103, 2, 235-241 (2019) · doi:10.1016/j.neuron.2019.05.014
[49] Bernander, Ö.; Koch, C.; Usher, M., The effect of synchronized inputs at the single neuron level, Neural Comput., 6, 4, 622-641 (1994) · doi:10.1162/neco.1994.6.4.622
[50] Connelly, W. M.; Stuart, G. J., Local versus global dendritic integration, Neuron, 103, 2, 173-174 (2019) · doi:10.1016/j.neuron.2019.06.019
[51] Cuntz, H.; Forstner, F.; Borst, A.; Häusser, M., One rule to grow them all: A general theory of neuronal branching and its practical application, PLoS Comput. Biol., 6, 8, e1000877 (2010) · doi:10.1371/journal.pcbi.1000877
[52] Miles, R.; Wong, R. K., Single neurones can initiate synchronized population discharge in the hippocampus, Nature, 306, 5941, 371-373 (1983) · doi:10.1038/306371a0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.