×

Quantum features of the nonlinear dissipative cavity interacting with a two-level atom under the influence of Stark shift. (English) Zbl 07858404

Summary: Generating the entanglement and controlling the non-classical properties are an important topic in quantum optics. In this paper, we consider a system consisting of two-photon Jaynes-Cummings model with an intensity dependent coupling and Kerr term in the presence of the Stark shift and in dispersive approximation. It is assumed that the cavity field is initially provided in the coherent state and the atom is in the superposition state, \(\boldsymbol{|\psi \rangle_{af}=\frac{1}{\sqrt{2}}(|e\rangle +|g\rangle)}\). We obtain the exact energy spectrum of the deformed model and examine the dependence of Stark shifts, deformation parameter and atom- field coupling constant on the level crossing phenomenon. Dissipation due to the coupling of the system with its surrounding medium is an unavoidable phenomenon in quantum systems. Thus for deformed JCM under nonlinear quantum dissipation, we solve the deformed Master equation in dispersive approximation. The non-classical properties of the time-evolved atom-field states are exhibited through evaluating the linear entropy measure and Mandel parameter. We examine the significance of damping and deformation parameters on the dynamical properties of atom-field system. It will be shown that the cavity damping and deformation parameter control the non-classical features of the field throughout the interaction time.

MSC:

81Vxx Applications of quantum theory to specific physical systems
81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
81Rxx Groups and algebras in quantum theory
Full Text: DOI

References:

[1] Jaynes, ET; Cummings, WF, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE, 51, 1, 89-109, 1963 · doi:10.1109/PROC.1963.1664
[2] Rabi, II, Space quantization in a gyrating magnetic field, Phys. Rev., 51, 8, 652, 1937 · Zbl 0017.23501 · doi:10.1103/PhysRev.51.652
[3] Narozhny, NB; Sanchez-Mondragon, JJ; Eberly, JH, Coherence versus incoherence: Collapse and revival in a simple quantum model, Phys. Rev. A, 23, 1, 236, 1981 · doi:10.1103/PhysRevA.23.236
[4] Sanchez, JJ; Narozhny, NB; Eberly, JH, Theory of spontaneous-emission line shape in an ideal cavity, Phys. Rev. Lett, 51, 7, 550, 1983 · doi:10.1103/PhysRevLett.51.550
[5] Agarwal, GS, Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity, Phys. Rev. Lett, 53, 18, 1732, 1984 · doi:10.1103/PhysRevLett.53.1732
[6] Cummings, FW, Stimulated emission of radiation in a single mode, Phys. Rev, 140, 4, A1051, 1965 · doi:10.1103/PhysRev.140.A1051
[7] Eberly, JH; Narozhny, NB; Sanchez-Mondragon, JJ, Periodic spontaneous collapse and revival in a simple quantum model, Phys. Rev. Lett, 44, 20, 1323, 1980 · Zbl 1404.81338 · doi:10.1103/PhysRevLett.44.1323
[8] Puri, RR; Agarwal, GS, Collapse and revival phenomena in the Jaynes-Cummings model with cavity damping, Phys. Rev. A, 33, 5, 3610, 1986 · doi:10.1103/PhysRevA.33.3610
[9] Alsing, P.; Zubairy, MS, Collapse and revivals in a two-photon absorption process, J. Opt. Soc. Am. B, 4, 2, 177-184, 1987 · doi:10.1364/JOSAB.4.000177
[10] Puri, RR; Bullough, RK, Quantum electrodynamics of an atom making two-photon transitions in an ideal cavity, J. Opt. Soc. Am. B, 5, 10, 2021-2028, 1987 · doi:10.1364/JOSAB.5.002021
[11] Gerry, CC; Moyer, PJ, Squeezing and higher-order squeezing in one-and two-photon Jaynes-Cummings models, Phys. Rev. A, 38, 11, 5665, 1998 · doi:10.1103/PhysRevA.38.5665
[12] Buzek, V.; Quang, T., Squeezing of spectral components in the Jaynes-Cummings model, J. Mod. Opt., 38, 8, 1559-1566, 1991 · doi:10.1080/09500349114551721
[13] Chaichian, M.; Ellinas, D.; Kulish, P., Quantum algebra as the dynamical symmetry of the deformed Jaynes-Cummings model, Phys. Rev. Lett., 65, 8, 980, 1990 · Zbl 1050.81561 · doi:10.1103/PhysRevLett.65.980
[14] Buzek, V., The Jaynes-Cummings model with a q analogue of a coherent state, J. Mod. Opt., 39, 5, 949-959, 1992 · Zbl 0941.81633 · doi:10.1080/09500349214550981
[15] Crnugelj, J.; Martinis, M.; Martinis, VM, Properties of a deformed Jaynes-Cummings model, Phys. Rev. A, 50, 2, 1785, 1994 · Zbl 0941.81666 · doi:10.1103/PhysRevA.50.1785
[16] De los Santos-Sanchez, O.; Récamier, J., The f-deformed Jaynes-Cummings model and its nonlinear coherent states, J. Phys. B, 45, 1, 015502, 2011 · doi:10.1088/0953-4075/45/1/015502
[17] Dehghani, A.; Mojaveri, B.; Shirin, S.; Faseghandis, SA, Parity deformed Jaynes-Cummings model: Robust maximally entangled States, Sci. Rep., 6, 1, 38069, 2016 · doi:10.1038/srep38069
[18] Fakhri, H.; Mirzaei, S.; Sayyah-Fard, M., Two-photon Jaynes-Cummings model: a two-level atom interacting with the para-Bose field, Quantum. Inf. Process., 20, 12, 398, 2021 · Zbl 1508.81986 · doi:10.1007/s11128-021-03338-z
[19] Einstein, A.; Podolsky, B.; Rosen, N., EinsteinPodolskyRosen, Phys. Rev., 47, 777, 1935 · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[20] Benenti, G.; Casati, G.; Strini, G., Principles of Quantum Computation and Information, 2004, Singapore: World Scientific, Singapore · Zbl 1119.81001 · doi:10.1142/5528
[21] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge (2000) · Zbl 1049.81015
[22] Ekert, AK, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., 67, 6, 661, 1991 · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[23] Bennett, CH; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wootters, WK, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 13, 1895, 1993 · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[24] Bouwmeester, D.; Pan, JW; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A., Experimental quantum teleportation, Nature, 390, 6660, 575-579, 1997 · Zbl 1369.81006 · doi:10.1038/37539
[25] Phoenix, SJD; Knight, PL, Fluctuations and entropy in models of quantum optical resonance, Ann. Phys., 186, 381-407, 1988 · Zbl 0709.76533 · doi:10.1016/0003-4916(88)90006-1
[26] Phoenix, SJD; Knight, PL, Establishment of an entangled atom-field state in the Jaynes-Cummings model, Phys. Rev. A, 44, 9, 6023, 1991 · doi:10.1103/PhysRevA.44.6023
[27] Knight, PL; Shore, BW, Schrödinger-cat states of the electromagnetic field and multilevel atoms, Phys. Rev. A, 48, 1, 642, 1993 · doi:10.1103/PhysRevA.48.642
[28] Fang, MF; Liu, X., Influence of the Stark shift on the evolution of field entropy and entanglement in two-photon processes, Phys. Lett. A, 210, 1-2, 11-20, 1996 · doi:10.1016/0375-9601(95)00846-2
[29] Freitas, DS; Vidiella-Barranco, A.; Roversi, JA, Field purification in the intensity-dependent Jaynes-Cummings model, Phys. Lett. A, 249, 4, 275, 1998 · doi:10.1016/S0375-9601(98)00756-7
[30] Peixoto, JG; Nemes, MC, Dissipative dynamics of the Jaynes-Cummings model in the dispersive approximation: Analytical results, Phys. Rev. A, 59, 5, 3918, 1999 · doi:10.1103/PhysRevA.59.3918
[31] Xie, Q.; Huang, J., Dynamics of atomic entanglement in double Jaynes-Cummings models containing \(\Lambda \)-type three-level atoms with the dissipation of two cavities, Int. J. Theor. Phys., 58, 12, 4033-4041, 2019 · Zbl 1447.81237 · doi:10.1007/s10773-019-04270-w
[32] Zhou, L.; Song, HS; Luo, YX; Li, C., Dissipative dynamics of two-photon Jaynes-Cummings model with the Stark shift in the dispersive approximation, Phys. Lett. A, 284, 4-5, 156-161, 2001 · Zbl 0983.81535 · doi:10.1016/S0375-9601(01)00308-5
[33] Alqannasa, HS; Abdel-Khalek, S., Nonclassical properties and field entropy squeezing of the dissipative two-photon JCM under Kerr like medium based on dispersive approximation, Opt Laser TechnolOpt Laser Technol, 111, 523, 2019 · doi:10.1016/j.optlastec.2018.10.028
[34] Guo, YQ; Zhou, L.; Song, HS, Dissipation of system and atom in two-photon Jaynes-Cummings model with degenerate atomic levels, Int. J. Theor. Phys., 44, 1373-1382, 2005 · Zbl 1104.81092 · doi:10.1007/s10773-005-4772-0
[35] Naderi, MH; Soltanolkotabi, M., Influence of nonlinear quantum dissipation on the dynamical properties of the f-deformed Jaynes-Cummings model in the dispersive limit, Eur. Phys. J. D., 39, 471-479, 2006 · doi:10.1140/epjd/e2006-00136-9
[36] Sivakumar, S., Interpolating coherent states for Heisenberg-Weyl and single-photon SU (1, 1) algebras, J. Phys. A Math. Gen., 35, 31, 6755, 2002 · Zbl 1066.81571 · doi:10.1088/0305-4470/35/31/315
[37] Mirzaei, S., Influence of nonlinearity on the Berry phase and thermal entanglement in deformed Jaynes-Cummings model, Pramana. J. Phys., 96, 2, 87, 2022 · doi:10.1007/s12043-022-02339-6
[38] Abdalla, MS; Obada, ASF; Abdel-khalek, S., Entropy squeezing of time dependent single-mode Jaynes-Cummings model in presence of non-linear effect, Chaos, Solitons Fractals, 36, 2, 405-417, 2008 · Zbl 1192.81418 · doi:10.1016/j.chaos.2006.06.067
[39] Baghshahi, HR; Tavassoly, MK; Behjat, A., Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium: A full nonlinear approach, Chin. Phys. B, 23, 7, 074203, 2014 · doi:10.1088/1674-1056/23/7/074203
[40] Isar, A.; Scheid, W., Deformation of quantum oscillator and of its interaction with environment, Physica. A, 335, 1-2, 79-93, 2004 · doi:10.1016/j.physa.2003.12.017
[41] Schleich, WP, Quantum Optics in Phase Space, 2001, Berlin: Wiley-VCH, Berlin · Zbl 0961.81136 · doi:10.1002/3527602976
[42] Al Naim, AF; Khan, JY; Khalil, EM; Abdel-Khalek, S., Effects of Kerr medium and stark shift parameter on wehrl entropy and the field purity for two-photon Jaynes-Cummings model under dispersive approximation, J. Russ. Laser Res., 40, 20-29, 2019 · doi:10.1007/s10946-019-09764-w
[43] Royer, A., Wigner function in Liouville space: a canonical formalism, Phys. Rev. A, 43, 1, 44, 1991 · doi:10.1103/PhysRevA.43.44
[44] Royer, A., Galilean space-time symmetries in Liouville space and Wigner-Weyl representations, Phys. Rev. A, 45, 2, 793, 1992 · doi:10.1103/PhysRevA.45.793
[45] Ban, M.: \(SU (1, 1)\) Lie algebraic approach to linear dissipative processes in quantum optics. J. Math. Phys. 33(9) (1992) · Zbl 0781.17014
[46] Zurek, WH; Habib, S.; Paz, JP, Coherent states via decoherence, Phys. Rev. Lett., 70, 9, 1187, 1993 · doi:10.1103/PhysRevLett.70.1187
[47] Mandel, L., Sub-Poissonian photon statistics in resonance fluorescence, Opt. Lett., 4, 7, 205, 1979 · doi:10.1364/OL.4.000205
[48] Mandel, L., Non-classical states of the electromagnetic field, Phys. Scripta., T12, 34, 1986 · doi:10.1088/0031-8949/1986/T12/005
[49] Mandel, L., Wolf, E.:Optical Coherence and Quantum Optics, Cambridge (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.