×

On the numerical treatment of interlaced target values: modeling, optimization and simulation of regulating valves in gas networks. (English) Zbl 07857727

Summary: Due to the current and foreseeable shifts towards carbon dioxide neutral energy production, which will likely result in balancing fluctuating renewable energy generation by transforming power-to-gas-to-power as well as building a large-scale hydrogen transport infrastructure, the trading and transport operations of gas will become more dynamic, volatile, and hence also less predictable. Therefore, computer-aided support in terms of rapid simulation and control optimization will further broaden its importance for gas network dispatching. In this paper, we aim to contribute and openly publish two new mathematical models for regulators, also referred to as control valves, which together with compressors make up the most complex and involved types of active elements in gas network infrastructures. They provide direct control over gas networks but are in turn controlled via target values, also known as set-point values, themselves. Our models incorporate up to six dynamical target values to define desired transient states for the elements’ local vicinity within the network. That is, each pair of every two target values defines a bounding box for the inlet pressure, outlet pressure as well as the passing mass flow of gas. In the proposed models, those target values are prioritized differently and are constantly in competition with each other, which can only be resolved dynamically at run-time of either a simulation or optimization process. Besides careful derivation, we compare simulation and optimization results with predictions of the widely adopted commercial simulation tool SIMONE, serving as our substitute for actual real-world transport operations.

MSC:

90C11 Mixed integer programming
90C90 Applications of mathematical programming

References:

[1] Åström, K.; Kumar, P., Control: a perspective, Automatica, 50, 3-43, 2014 · Zbl 1298.93013 · doi:10.1016/j.automatica.2013.10.012
[2] Åström, K.; Murray, RM, Feedback systems: an introduction for scientists and engineers, 2008, Princeton: Princeton University Press, Princeton · Zbl 1144.93001
[3] Benner P, Grundel S, Himpe C, Huck C, Streubel T, Tischendorf C (2019) Gas network benchmark models. Springer, Cham, pp 171-197. doi:10.1007/11221_2018_5 · Zbl 1445.76065
[4] Bonami, P.; Lodi, A.; Tramontani, A.; Wiese, S., On mathematical programming with indicator constraints, Math Program, 151, 1, 191-223, 2015 · Zbl 1328.90086 · doi:10.1007/s10107-015-0891-4
[5] Brouwer, J.; Gasser, I.; Herty, M., Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks, Multiscale Model Simul, 9, 2, 601-623, 2011 · Zbl 1254.76124 · doi:10.1137/100813580
[6] Brown GO (2003) The history of the Darcy-Weisbach equation for pipe flow resistance. Environmental and water resources history,pp 34-43, doi:10.1061/40650(2003)4
[7] Camacho, EF; Alba, CB, Model predictive control, 2007, London: Springer, London · doi:10.1007/978-0-85729-398-5
[8] Carter RG, Rachford HH Jr (2003) Optimizing Line-Pack Management to Hedge Against Future Load Uncertainty. In: PSIG annual meeting, pipeline simulation interest group, Bern, Switzerland
[9] Colebrook, CF; White, CM, Experiments with fluid friction in roughened pipes, Proc R Soc Lond Ser A - Math Phys Sci, 161, 906, 367-381, 1937 · doi:10.1098/rspa.1937.0150
[10] Darby, ML; Nikolaou, M., Mpc: Current practice and challenges, Control Eng Pract, 20, 4, 328-342, 2012 · doi:10.1016/j.conengprac.2011.12.004
[11] Domschke P, Hiller B, Lang J, Mehrmann V, Morandin R, Tischendorf C (2021) Gas network modeling: an overview. Technical Report, Technische Universität Darmstadt
[12] European Commission (2020) Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions—hydrogen strategy for a climate-neutral Europe. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301. Accessed 22 Nov 2021
[13] Federal Ministry for Economic Affairs and Energy (2021) Still indispensable for a reliable energy supply. https://www.bmwi.de/Redaktion/EN/Dossier/conventional-energy-sources.html. Accessed 22 Nov 2021
[14] Fügenschuh A, Geißler B, Gollmer R, Morsi A, Pfetsch ME, Rövekamp J, Schmidt M, Spreckelsen K, Steinbach MC (2015) Physical and technical fundamentals of gas networks. In: Koch et al. (2015)
[15] Graham JT, Wukovits VJ, Yurchevich JD (1996) On-line modeling a diamond in the rough. In: PSIG annual meeting, pipeline simulation interest group, PSIG-9601
[16] Gurobi Optimization L (2020) Gurobi optimizer reference manual, version 9.1. https://www.gurobi.com
[17] Haber, R.; Schmitz, U.; Zabet, K., Implementation of pfc (predictive functional control) in a petrochemical plant, IFAC Proc, 47, 3, 5333-5338, 2014 · doi:10.3182/20140824-6-ZA-1003.02440
[18] Harris, CR; Millman, KJ; van der Walt, SJ; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, NJ; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, MH; Brett, M.; Haldane, A.; del Río, JF; Wiebe, M.; Peterson, P.; Gérard-Marchant, P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.; Oliphant, TE, Array programming with NumPy, Nature, 585, 7825, 357-362, 2020 · doi:10.1038/s41586-020-2649-2
[19] Hart WE, Laird CD, Watson JP, Woodruff DL, Hackebeil GA, Nicholson BL, Siirola JD (2017) Pyomo—optimization modeling in python, vol 67, 2nd edn. Springer, Berlin. doi:10.1007/978-3-319-58821-6 · Zbl 1370.90003
[20] Hart, WE; Watson, JP; Woodruff, DL, Pyomo: modeling and solving mathematical programs in Python, Math Program Comput, 3, 3, 219, 2011 · doi:10.1007/s12532-011-0026-8
[21] Hennings F (2018) Benefits and limitations of simplified transient gas flow formulations. In: Operations research proceedings 2017. Springer, pp 231-237
[22] Hennings, F., Large-scale empirical study on the momentum equation’s inertia term, J Nat Gas Sci Eng, 2021 · doi:10.1016/j.jngse.2021.104153
[23] Hennings, F.; Anderson, L.; Hoppmann-Baum, K.; Turner, M.; Koch, T., Controlling transient gas flow in real-world pipeline intersection areas, Optim Eng, 22, 2, 687-734, 2021 · doi:10.1007/s11081-020-09559-y
[24] Hoppmann-Baum K, Hennings F, Zittel J, Gotzes U, Spreckelsen EM, Spreckelsen K, Koch T (2020) From natural gas towards hydrogen—a feasibility study on current transport network infrastructure and its technical control. Tech. Rep. 20-27, ZIB, Takustr. 7, 14195, Berlin
[25] Huck C (2018) Perturbation analysis and numerical discretisation of hyperbolic partial differential algebraic equations describing flow networks. PhD thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät. doi:10.18452/19596
[26] Huck, C.; Jansen, L.; Tischendorf, C., A topology based discretization of PDAEs describing water transportation networks, PAMM, 14, 1, 923-924, 2014 · doi:10.1002/pamm.201410442
[27] Koch T, Hiller B, Pfetsch ME, Schewe L (eds) (2015) Evaluating Gas Network Capacities, MOS-SIAM Series on Optimization, vol 21. SIAM · Zbl 1322.90007
[28] Kolb, O.; Lang, J.; Bales, P., An implicit box scheme for subsonic compressible flow with dissipative source term, Numer Algorithms, 53, 2-3, 293-307, 2010 · Zbl 1425.76114 · doi:10.1007/s11075-009-9287-y
[29] Kuphaldt TR (2019) Source code of lessons in industrial instrumentation textbook. Self published files at https://www.ibiblio.org/kuphaldt/socratic/sinst/book/liii.tar.gz. Last accessed 22 Nov 2021
[30] LIWACOM Informationstechnik GmbH (2022) SIMONE software. https://www.liwacom.de/. Accessed 16 June 2022
[31] Mallinson, J.; Fincham, A.; Bull, S.; Rollett, JS; Wong, ML, Methods for optimizing gas transmission networks, Ann Oper Res, 43, 8, 443-454, 1993 · Zbl 0800.90633 · doi:10.1007/BF02024841
[32] Meireles, M.; Almeida, P.; Simoes, M., A comprehensive review for industrial applicability of artificial neural networks, IEEE Trans Ind Electron, 50, 3, 585-601, 2003 · doi:10.1109/TIE.2003.812470
[33] Menon, ES, Gas pipeline hydraulics, 2005, Boca Raton: CRC Press, Boca Raton · doi:10.1201/9781420038224
[34] Nguyen, AT; Taniguchi, T.; Eciolaza, L.; Campos, V.; Palhares, R.; Sugeno, M., Fuzzy control systems: past, present and future, IEEE Comput Intell Mag, 14, 1, 56-68, 2019 · doi:10.1109/MCI.2018.2881644
[35] Nikuradse J (1950) Laws of flow in rough pipes. National Advisory Committee for Aeronautics Washington
[36] Onnes, HK, Expression of the equation of state of gases and liquids by means of series, Koninklijke Nederlandse Akademie van Wetenschappen Proc Ser B Phys Sci, 4, 125-147, 1902
[37] Osiadacz AJ (1996) Different transient flow models—limitations, advantages, and disadvantages. In: PSIG-9606, Pipeline Simulation Interest Group
[38] Pambour, KA; Bolado-Lavin, R.; Dijkema, GP, An integrated transient model for simulating the operation of natural gas transport systems, J Nat Gas Sci Eng, 28, 672-690, 2016 · doi:10.1016/j.jngse.2015.11.036
[39] Pápay J (1968) A termeléstechnológiai paraméterek változása a gáztelepek müvelése során. OGIL Müsz Tud Közl pp 267-273
[40] Pfetsch ME, Fügenschuh A, Geißler B, Geißler N, Gollmer R, Hiller B, Humpola J, Koch T, Lehmann T, Martin A, Morsi A, Rövekamp J, Schewe L, Schmidt M, Schultz R, Schwarz R, Schweiger J, Stangl C, Steinbach MC, Vigerske S, Willert BM (2015) Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions. Optim Methods Softw 30(1):15-53. doi:10.1080/10556788.2014.888426 · Zbl 1325.90019
[41] Plotly Technologies Inc (2015) Collaborative data science. https://plot.ly
[42] Porter, B.; Khaki-Sedigh, A., Design of robust adaptive digital setpoint tracking Pl controllers incorporating recursive step-response matrix identifiers for gas turbines, Trans Inst Meas Control, 10, 1, 9-14, 1988 · doi:10.1177/014233128801000103
[43] Rachford HH Jr, Carter RG (2000) Optimizing pipeline control in transient gas flow. In: PSIG annual meeting, pipeline simulation interest group, Savannah, Georgia
[44] Saleh JM (2002) Fluid Flow Handbook. McGraw-Hill Professional
[45] Schmidt, M.; Steinbach, MC; Willert, BM, High detail stationary optimization models for gas networks, Optim Eng, 16, 1, 131-164, 2015 · Zbl 1364.90066 · doi:10.1007/s11081-014-9246-x
[46] Schmidt, M.; Aßmann, D.; Burlacu, R.; Humpola, J.; Joormann, I.; Kanelakis, N.; Koch, T.; Oucherif, D.; Pfetsch, ME; Schewe, L.; Schwarz, R.; Sirvent, M., GasLib-a library of gas network instances, Data, 2, 4, 1, 2017 · doi:10.3390/data2040040
[47] SIMONE Research Group, LIWACOM Informationstechnik GmbH (2021) SIMONE software—equations and methods
[48] Skogestad, S.; Postlethwaite, I., Multivariable feedback control: analysis and design, 2005, Hoboken: Wiley, Hoboken · Zbl 0842.93024
[49] Stelter, R., Control of gas transport systems—a multilevel approach, IFAC Proc Vol, 21, 19, 309-314, 1988 · doi:10.1016/S1474-6670(17)54511-5
[50] Streubel T (2022) Simulation of piecewise smooth differential algebraic equations with application to gas networks. Doctoral Thesis, Humboldt-Universität zu Berlin. doi:10.18452/24688
[51] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 10 Contributors (2020) SciPy 1.0: Fundamental algorithms for scientific computing in python. Nat Methods 17:261-272. doi:10.1038/s41592-019-0686-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.