×

Smooth transonic flows with nonzero vorticity to a quasi two dimensional steady Euler flow model. (English) Zbl 07855936

Summary: This paper concerns smooth transonic flows with nonzero vorticity in De Laval nozzles for a quasi two dimensional steady Euler flow model which is a generalization of the classical quasi one dimensional model. First we examine the existence and uniqueness of smooth transonic flows to the quasi one-dimensional model, which start from a subsonic state at the entrance and accelerate to reach a sonic state at the throat and then become supersonic are proved by a reduction of degeneracy of the velocity near the sonic point and the implicit function theorem. These flows can have positive or zero acceleration at their sonic points and the degeneracy types near the sonic point are classified precisely. We then establish the structural stability of the smooth one dimensional transonic flow with positive acceleration at the sonic point for the quasi two dimensional steady Euler flow model under small perturbations of suitable boundary conditions, which yields the existence and uniqueness of a class of smooth transonic flows with nonzero vorticity and positive acceleration to the quasi two dimensional model. The positive acceleration of the one dimensional transonic solutions plays an important role in searching for an appropriate multiplier for the linearized second order mixed type equations. A deformation-curl decomposition for the quasi two dimensional model is utilized to deal with the transonic flows with nonzero vorticity.

MSC:

35Q31 Euler equations
35M12 Boundary value problems for PDEs of mixed type
76H05 Transonic flows
76G25 General aerodynamics and subsonic flows
76J20 Supersonic flows
76L05 Shock waves and blast waves in fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76N15 Gas dynamics (general theory)
35L67 Shocks and singularities for hyperbolic equations
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Bae, M., Duan, B., Xie, C.: The steady Euler-Poisson system and accelerating flows with transonic \(C^1\)-transitions, 2023. arXiv:2308.04694v1
[2] Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. Wiley, New York, 1958 · Zbl 0083.20501
[3] Chen, G.; Feldman, M., Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type, J. Am. Math. Soc., 16, 461-494, 2003 · Zbl 1015.35075 · doi:10.1090/S0894-0347-03-00422-3
[4] Chen, G.; Dafermos, C.; Slemrod, M.; Wang, D., On two-dimensional sonic-subsonic flow, Commun. Math. Phys., 271, 3, 635-647, 2007 · Zbl 1128.35070 · doi:10.1007/s00220-007-0211-9
[5] Chen, G.; Huang, F.; Wang, T., Sonic-subsonic limit of approximate solutions to multidimensional steady Euler equations, Arch. Ration. Mech. Anal., 219, 719-740, 2016 · Zbl 1333.35168 · doi:10.1007/s00205-015-0905-7
[6] Chen, S., Transonic shocks in 3-D compressible flow passing a duct with a general section for Euler systems, Trans. Am. Math. Soc, 360, 5265-5289, 2008 · Zbl 1158.35064 · doi:10.1090/S0002-9947-08-04493-0
[7] Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience Publishers Inc, New York, 1948 · Zbl 0041.11302
[8] Embid, P.; Goodman, J.; Majda, A., Multiple steady states for 1-D transonic flow, SIAM J. Sci. Stat. Comput., 5, 21-41, 1984 · Zbl 0573.76055 · doi:10.1137/0905002
[9] Fang, B.; Xin, Z., On admissible locations of transonic shock fronts for steady Euler flows in an almost flat finite nozzle with prescribed receiver pressure, Commun. Pure Appl. Math., 74, 7, 1493-1544, 2021 · Zbl 1479.76062 · doi:10.1002/cpa.21966
[10] Frankl, F., On the problems of Chaplygin for mixed sub and supersonic flows, Bull. Acd. Sci. l’USSR, 9, 121-142, 1945 · Zbl 0063.01435
[11] Friedrichs, KO, Symmetric positive linear differential equations, Commun. Pure Appl. Math. X, I, 333-418, 1958 · Zbl 0083.31802 · doi:10.1002/cpa.3160110306
[12] Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin, 1977 · Zbl 0361.35003
[13] Glimm, J.; Marshall, G.; Plohr, B., A generalized Riemann problem for quasi-one-dimensional gas flow, Adv. Appl. Math., 5, 1-30, 1984 · Zbl 0566.76056 · doi:10.1016/0196-8858(84)90002-2
[14] Huang, F.; Wang, T.; Wang, Y., On multi-dimensional sonic-subsonic flow, Acta Math. Sci., 31, 2131-2140, 2011 · Zbl 1265.76039 · doi:10.1016/S0252-9602(11)60389-5
[15] Kuz’min, Alexander G.: Boundary Value Problems for Transonic Flow. Wiley, West Sussex, 2002
[16] Li, J.; Xin, Z.; Yin, H., On transonic shocks in a nozzle with variable end pressures, Commun. Math. Phys, 291, 111-150, 2009 · Zbl 1187.35138 · doi:10.1007/s00220-009-0870-9
[17] Li, J.; Xin, Z.; Yin, H., A free boundary value problem for the full Euler system and 2-D transonic shock in a large variable nozzle, Math. Res. Lett., 16, 777-796, 2009 · Zbl 1194.35517 · doi:10.4310/MRL.2009.v16.n5.a3
[18] Li, J.; Xin, Z.; Yin, H., Transonic shocks for the full compressible Euler system in a general two-dimensional de Laval nozzle, Arch. Ration. Mech. Anal., 207, 2, 533-581, 2013 · Zbl 1320.76056 · doi:10.1007/s00205-012-0580-x
[19] Liepmann, H.W., Roshko, A.: Elements of Gas Dynamics. GALCIT Aeronautical Series. Wiley, New York, 1957 · Zbl 0078.39901
[20] Liu, T., Nonlinear stability and instability of transonic flows through a nozzle, Commun. Math. Phys., 83, 243-260, 1982 · Zbl 0576.76053 · doi:10.1007/BF01976043
[21] Liu, T., Transonic gas flow in a duct of varing area, Arch. Ration. Mech. Anal., 80, 1-18, 1982 · Zbl 0503.76076 · doi:10.1007/BF00251521
[22] Morawetz, C., On the non-existence of continuous transonic flows past profiles I, Commun. Pure Appl. Math., 9, 1, 45-68, 1956 · Zbl 0070.20206 · doi:10.1002/cpa.3160090104
[23] Rauch, J.; Xie, C.; Xin, Z., Global stability of steady transonic Euler shocks in quasi-one-dimensional nozzles, J. Math. Pures Appl., 99, 4, 395-408, 2013 · Zbl 1287.35073 · doi:10.1016/j.matpur.2012.09.006
[24] Tricomi, FG, Sulle equazioni lineari alle derivate parziali di seconde ordine di tipo misto, Rend. Reale Accad. Lincei Ser., 14, 133-247, 1923 · JFM 49.0346.01
[25] Wang, C.; Xin, Z., On a degenerate free boundary problem and continuous subsonic-sonic flows in a convergent nozzle, Arch. Ration. Mech. Anal., 208, 3, 911-975, 2013 · Zbl 1286.35209 · doi:10.1007/s00205-012-0607-3
[26] Wang, C.; Xin, Z., On sonic curves of smooth subsonic-sonic and transonic flows, SIAM J. Math. Anal., 48, 4, 2414-2453, 2016 · Zbl 1410.76137 · doi:10.1137/16M1056407
[27] Wang, C.; Xin, Z., Smooth transonic flows of Meyer type in De Laval nozzles, Arch. Ration. Mech. Anal., 232, 3, 1597-1647, 2019 · Zbl 1414.35176 · doi:10.1007/s00205-018-01350-9
[28] Wang, C.; Xin, Z., Regular subsonic-sonic flows in general nozzles, Adv. Math., 380, 2021 · Zbl 1458.35321 · doi:10.1016/j.aim.2021.107578
[29] Weng, S.; Xin, Z., A deformation-curl decomposition for three dimensional steady Euler equations (in Chinese), Sci. Sin. Math., 49, 307-320, 2019 · Zbl 1499.35490 · doi:10.1360/N012018-00125
[30] Weng, S., A deformation-curl-Poisson decomposition to the three dimensional steady Euler-Poisson system with applications, J. Differ. Equ., 267, 11, 6574-6603, 2019 · Zbl 1425.35038 · doi:10.1016/j.jde.2019.07.002
[31] Weng, S.; Xie, C.; Xin, Z., Structural stability of the transonic shock problem in a divergent three-dimensional axisymmetric perturbed nozzle, SIAM J. Math. Anal., 53, 279-308, 2021 · Zbl 1464.35159 · doi:10.1137/20M1318869
[32] Weng, S.; Xin, Z.; Yuan, H., Steady compressible radially symmetric flows in an annulus, J. Differ. Equ., 286, 433-454, 2021 · Zbl 1462.76124 · doi:10.1016/j.jde.2021.03.028
[33] Weng, S.; Xin, Z.; Yuan, H., On some smooth symmetric transonic flows with nonzero angular velocity and vorticity, Math. Models Methods Appl. Sci., 31, 13, 2773-2817, 2021 · Zbl 1490.76122 · doi:10.1142/S0218202521500615
[34] Weng, S.; Zhang, Z., Two dimensional subsonic and subsonic-sonic spiral flows outside a porous body, Acta Math. Sci., 42, 1569-1584, 2022 · Zbl 1499.35104 · doi:10.1007/s10473-022-0416-1
[35] Weng, S., Xin, Z.: Existence and stability of cylindrical transonic shock solutions under three dimensional perturbations. arXiv:2304.02429
[36] Xie, C.; Xin, Z., Global subsonic and subsonic-sonic flows through infinitely long nozzles, Indiana Univ. Math. J., 56, 2991-3023, 2007 · Zbl 1156.35076 · doi:10.1512/iumj.2007.56.3108
[37] Xin, Z.; Yin, H., Transonic shock in a nozzle I: 2D case, Commun. Pure Appl. Math., 58, 999-1050, 2005 · Zbl 1076.76043 · doi:10.1002/cpa.20025
[38] Xin, Z.; Yin, H., 3-Diemsional transonic shock in a nozzle, Pac. J. Math., 236, 139-193, 2008 · Zbl 1232.35097 · doi:10.2140/pjm.2008.236.139
[39] Xin, Z.; Yin, H., Transonic shock in a curved nozzle, 2-D and 3-D complete Euler systems, J. Differ. Equ., 245, 1014-1085, 2008 · Zbl 1165.35031 · doi:10.1016/j.jde.2008.04.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.