×

Fast generation of the non-trivial ground states of the Agassi model with a quantum simulator. (English) Zbl 07855795

Summary: Here we present a superadiabatic scheme on a quantum computer to quickly prepare the ground state of the Agassi model, a typical quadrupole plus pairing model with broad applications in nuclear physics as well as many-body systems. By virtue of the Floquet-engineering counterdiabatic driving, this method can accelerate the conventional quantum adiabatic driving without extra control fields. Compared to the adiabatic protocol, the resulting scheme allows for a drastic increase in the final fidelity within a short evolution time, which can effectively inhibit the decoherence effects in quantum simulators. Numerical simulations demonstrate the feasibility of this proposal for fast generating the ground state of Agassi model with different sites. This research opens an avenue for future quantum simulations, and provides a useful method to address currently unanswered questions in nuclear physics using intermediate-scale quantum coprocessors.

MSC:

81-XX Quantum theory
83-XX Relativity and gravitational theory
Full Text: DOI

References:

[1] Krane, K. S., Introductory Nuclear Physics, 1991, John Wiley & Sons
[2] Zhang, J.; Pagano, G.; Hess, P. W.; Kyprianidis, A.; Becker, P.; Kaplan, H.; Gorshkov, A. V.; Gong, Z.-X.; Monroe, C., Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator, Nature, 551, 7682, 601-604, 2017
[3] You, J. Q.; Nori, F., Atomic physics and quantum optics using superconducting circuits, Nature, 474, 7353, 589-597, 2011
[4] Peng, X.; Zhang, J.; Du, J.; Suter, D., Quantum simulation of a system with competing two- and three-body interactions, Phys. Rev. Lett., 103, Article 140501 pp., 2009
[5] Cai, J.; Retzker, A.; Jelezko, F.; Plenio, M. B., A large-scale quantum simulator on a diamond surface at room temperature, Nat. Phys., 9, 3, 168-173, 2013
[6] Feynman, R. P., Simulating physics with computers, Int. J. Theor. Phys., 21, 6, 467-488, 1982
[7] Georgescu, I. M.; Ashhab, S.; Nori, F., Quantum simulation, Rev. Mod. Phys., 86, 153-185, 2014
[8] McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S. C.; Yuan, X., Quantum computational chemistry, Rev. Mod. Phys., 92, Article 015003 pp., 2020
[9] Bharti, K.; Cervera-Lierta, A.; Kyaw, T. H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J. S.; Menke, T.; Mok, W.-K.; Sim, S.; Kwek, L.-C.; Aspuru-Guzik, A., Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys., 94, Article 015004 pp., 2022
[10] Ayral, T.; Besserve, P.; Lacroix, D.; Ruiz Guzman, E. A., Quantum computing with and for many-body physics, Eur. Phys. J. A, 59, 10, 227, 2023
[11] Zhang, D.-B.; Xing, H.; Yan, H.; Wang, E.; Zhu, S.-L., Selected topics of quantum computing for nuclear physics*, Chin. Phys. B, 30, 2, Article 020306 pp., 2021
[12] Bauer, C. W.; Davoudi, Z.; Balantekin, A. B.; Bhattacharya, T.; Carena, M.; de Jong, W. A.; Draper, P.; El-Khadra, A.; Gemelke, N.; Hanada, M.; Kharzeev, D.; Lamm, H.; Li, Y.-Y.; Liu, J.; Lukin, M.; Meurice, Y.; Monroe, C.; Nachman, B.; Pagano, G.; Preskill, J.; Rinaldi, E.; Roggero, A.; Santiago, D. I.; Savage, M. J.; Siddiqi, I.; Siopsis, G.; Van Zanten, D.; Wiebe, N.; Yamauchi, Y.; Yeter-Aydeniz, K.; Zorzetti, S., Quantum simulation for high-energy physics, PRX Quantum, 4, Article 027001 pp., 2023
[13] Meglio, A. D.; Jansen, K.; Tavernelli, I.; Alexandrou, C.; Arunachalam, S.; Bauer, C. W.; Borras, K.; Carrazza, S.; Crippa, A.; Croft, V.; de Putter, R.; Delgado, A.; Dunjko, V.; Egger, D. J.; Fernandez-Combarro, E.; Fuchs, E.; Funcke, L.; Gonzalez-Cuadra, D.; Grossi, M.; Halimeh, J. C.; Holmes, Z.; Kuhn, S.; Lacroix, D.; Lewis, R.; Lucchesi, D.; Martinez, M. L.; Meloni, F.; Mezzacapo, A.; Montangero, S.; Nagano, L.; Radescu, V.; Ortega, E. R.; Roggero, A.; Schuhmacher, J.; Seixas, J.; Silvi, P.; Spentzouris, P.; Tacchino, F.; Temme, K.; Terashi, K.; Tura, J.; Tuysuz, C.; Vallecorsa, S.; Wiese, U.-J.; Yoo, S.; Zhang, J., Quantum computing for high-energy physics: state of the art and challenges, 2023, Summary of the qc4hep working group
[14] Martinez, E. A.; Muschik, C. A.; Schindler, P.; Nigg, D.; Erhard, A.; Heyl, M.; Hauke, P.; Dalmonte, M.; Monz, T.; Zoller, P.; Blatt, R., Real-time dynamics of lattice gauge theories with a few-qubit quantum computer, Nature, 534, 7608, 516-519, 2016
[15] Kokail, C.; Maier, C.; van Bijnen, R.; Brydges, T.; Joshi, M. K.; Jurcevic, P.; Muschik, C. A.; Silvi, P.; Blatt, R.; Roos, C. F.; Zoller, P., Self-verifying variational quantum simulation of lattice models, Nature, 569, 7756, 355-360, 2019
[16] Lv, P.; Wei, S.; Xie, H.-N.; Long, G., Qcsh: a full quantum computer nuclear shell-model package, Sci. China, Phys. Mech. Astron., 66, 4, Article 240311 pp., 2023
[17] Cervia, M. J.; Balantekin, A. B.; Coppersmith, S. N.; Johnson, C. W.; Love, P. J.; Poole, C.; Robbins, K.; Saffman, M., Lipkin model on a quantum computer, Phys. Rev. C, 104, Article 024305 pp., 2021
[18] Hlatshwayo, M. Q.; Zhang, Y.; Wibowo, H.; LaRose, R.; Lacroix, D.; Litvinova, E., Simulating excited states of the Lipkin model on a quantum computer, Phys. Rev. C, 106, Article 024319 pp., 2022
[19] Beaujeault-Taudière, Y.; Lacroix, D., Solving the Lipkin model using quantum computers with two qubits only with a hybrid quantum-classical technique based on the generator coordinate method, Phys. Rev. C, 109, Article 024327 pp., 2024
[20] Dumitrescu, E. F.; McCaskey, A. J.; Hagen, G.; Jansen, G. R.; Morris, T. D.; Papenbrock, T.; Pooser, R. C.; Dean, D. J.; Lougovski, P., Cloud quantum computing of an atomic nucleus, Phys. Rev. Lett., 120, Article 210501 pp., 2018
[21] Lu, H.-H.; Klco, N.; Lukens, J. M.; Morris, T. D.; Bansal, A.; Ekström, A.; Hagen, G.; Papenbrock, T.; Weiner, A. M.; Savage, M. J.; Lougovski, P., Simulations of subatomic many-body physics on a quantum frequency processor, Phys. Rev. A, 100, Article 012320 pp., 2019
[22] Robin, C.; Savage, M. J.; Pillet, N., Entanglement rearrangement in self-consistent nuclear structure calculations, Phys. Rev. C, 103, Article 034325 pp., 2021
[23] Romero, A. M.; Engel, J.; Tang, H. L.; Economou, S. E., Solving nuclear structure problems with the adaptive variational quantum algorithm, Phys. Rev. C, 105, Article 064317 pp., 2022
[24] Roggero, A.; Carlson, J., Dynamic linear response quantum algorithm, Phys. Rev. C, 100, Article 034610 pp., 2019
[25] Roggero, A.; Gu, C.; Baroni, A.; Papenbrock, T., Preparation of excited states for nuclear dynamics on a quantum computer, Phys. Rev. C, 102, Article 064624 pp., 2020
[26] Du, W.; Vary, J. P.; Zhao, X.; Zuo, W., Quantum simulation of nuclear inelastic scattering, Phys. Rev. A, 104, Article 012611 pp., 2021
[27] Agassi, D., Validity of the BCS and RPA approximations in the pairing-plus-monopole solvable model, Nucl. Phys., 116, 1, 49-71, 1968
[28] Davis, E. D.; Heiss, W. D., Random-phase approximation and broken symmetry, J. Phys. G, Nucl. Phys., 12, 9, 805, 1986
[29] García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M., Phase diagram of an extended agassi model, Phys. Rev. C, 97, Article 054303 pp., 2018
[30] Hermes, M. R.; Dukelsky, J.; Scuseria, G. E., Combining symmetry collective states with coupled-cluster theory: lessons from the agassi model Hamiltonian, Phys. Rev. C, 95, Article 064306 pp., 2017
[31] Sachdev, S., Quantum Phase Transitions, 2011, Cambridge University Press · Zbl 1233.82003
[32] Faba, J.; Martín, V.; Robledo, L., Two-orbital quantum discord in fermion systems, Phys. Rev. A, 103, Article 032426 pp., 2021
[33] Pérez-Fernández, P.; Arias, J.-M.; García-Ramos, J.-E.; Lamata, L., A digital quantum simulation of the Agassi model, Phys. Lett. B, 829, Article 137133 pp., 2022 · Zbl 1496.81105
[34] Garbe, L.; Bina, M.; Keller, A.; Paris, M. G.A.; Felicetti, S., Critical quantum metrology with a finite-component quantum phase transition, Phys. Rev. Lett., 124, Article 120504 pp., 2020
[35] Gard, B. T.; Zhu, L.; Barron, G. S.; Mayhall, N. J.; Economou, S. E.; Barnes, E., Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm, npj Quantum Inf., 6, 1, 10, 2020
[36] Grossi, M.; Kiss, O.; De Luca, F.; Zollo, C.; Gremese, I.; Mandarino, A., Finite-size criticality in fully connected spin models on superconducting quantum hardware, Phys. Rev. E, 107, Article 024113 pp., 2023
[37] Farhi, E.; Goldstone, J.; Gutmann, S., A quantum approximate optimization algorithm, 2014
[38] Zhou, L.; Wang, S.-T.; Choi, S.; Pichler, H.; Lukin, M. D., Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices, Phys. Rev. X, 10, Article 021067 pp., 2020
[39] Farhi, E.; Goldstone, J.; Gutmann, S.; Lapan, J.; Lundgren, A.; Preda, D., A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science, 292, 5516, 472-475, 2001 · Zbl 1226.81046
[40] Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M., Simulated quantum computation of molecular energies, Science, 309, 5741, 1704-1707, 2005
[41] Albash, T.; Lidar, D. A., Adiabatic quantum computation, Rev. Mod. Phys., 90, Article 015002 pp., 2018
[42] Jordan, P.; Wigner, E., Über das Paulische Äquivalenzverbot, Z. Phys., 47, 9, 631-651, 1928 · JFM 54.0983.03
[43] Casanova, J.; Mezzacapo, A.; Lamata, L.; Solano, E., Quantum simulation of interacting fermion lattice models in trapped ions, Phys. Rev. Lett., 108, Article 190502 pp., 2012
[44] Harty, T. P.; Allcock, D. T.C.; Ballance, C. J.; Guidoni, L.; Janacek, H. A.; Linke, N. M.; Stacey, D. N.; Lucas, D. M., High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit, Phys. Rev. Lett., 113, Article 220501 pp., 2014
[45] Ballance, C. J.; Harty, T. P.; Linke, N. M.; Sepiol, M. A.; Lucas, D. M., High-fidelity quantum logic gates using trapped-ion hyperfine qubits, Phys. Rev. Lett., 117, Article 060504 pp., 2016
[46] Sáiz, A.; García-Ramos, J.-E.; Arias, J. M.; Lamata, L.; Pérez-Fernández, P., Digital quantum simulation of an extended agassi model: using machine learning to disentangle its phase-diagram, Phys. Rev. C, 106, Article 064322 pp., 2022
[47] Trotter, H. F., On the product of semi-groups of operators, Proc. Am. Math. Soc., 10, 4, 545-551, 1959 · Zbl 0099.10401
[48] Suzuki, M., Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems, Commun. Math. Phys., 51, 2, 183-190, 1976 · Zbl 0341.47028
[49] Lloyd, S., Universal quantum simulators, Science, 273, 5278, 1073-1078, 1996 · Zbl 1226.81059
[50] del Campo, A.; Kim, K., Focus on shortcuts to adiabaticity, New J. Phys., 21, 5, Article 050201 pp., 2019
[51] Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J. G., Shortcuts to adiabaticity: concepts, methods, and applications, Rev. Mod. Phys., 91, Article 045001 pp., 2019
[52] Demirplak, M.; Rice, S. A., Adiabatic population transfer with control fields, J. Phys. Chem. A, 107, 46, 9937-9945, 2003
[53] Berry, M. V., Transitionless quantum driving, J. Phys. A, 42, 36, Article 365303 pp., 2009 · Zbl 1178.81055
[54] Chen, X.; Lizuain, I.; Ruschhaupt, A.; Guéry-Odelin, D.; Muga, J. G., Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett., 105, Article 123003 pp., 2010
[55] Sels, D.; Polkovnikov, A., Minimizing irreversible losses in quantum systems by local counterdiabatic driving, Proc. Natl. Acad. Sci. USA, 114, 20, E3909-E3916, 2017 · Zbl 1404.81128
[56] Marin Bukov, L. D.; Polkovnikov, A., Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering, Adv. Phys., 64, 2, 139-226, 2015
[57] Eckardt, A., Colloquium: atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys., 89, Article 011004 pp., 2017
[58] Choi, J.; Zhou, H.; Knowles, H. S.; Landig, R.; Choi, S.; Lukin, M. D., Robust dynamic Hamiltonian engineering of many-body spin systems, Phys. Rev. X, 10, Article 031002 pp., 2020
[59] Kiefer, P.; Hakelberg, F.; Wittemer, M.; Bermúdez, A.; Porras, D.; Warring, U.; Schaetz, T., Floquet-engineered vibrational dynamics in a two-dimensional array of trapped ions, Phys. Rev. Lett., 123, Article 213605 pp., 2019
[60] Meitei, O. R.; Gard, B. T.; Barron, G. S.; Pappas, D. P.; Economou, S. E.; Barnes, E.; Mayhall, N. J., Gate-free state preparation for fast variational quantum eigensolver simulations, npj Quantum Inf., 7, 1, 155, 2021
[61] Koski, J. V.; Landig, A. J.; Pályi, A.; Scarlino, P.; Reichl, C.; Wegscheider, W.; Burkard, G.; Wallraff, A.; Ensslin, K.; Ihn, T., Floquet spectroscopy of a strongly driven quantum dot charge qubit with a microwave resonator, Phys. Rev. Lett., 121, Article 043603 pp., 2018
[62] Weitenberg, C.; Simonet, J., Tailoring quantum gases by Floquet engineering, Nat. Phys., 17, 12, 1342-1348, 2021
[63] Geier, S.; Thaicharoen, N.; Hainaut, C.; Franz, T.; Salzinger, A.; Tebben, A.; Grimshandl, D.; Zürn, G.; Weidemüller, M., Floquet Hamiltonian engineering of an isolated many-body spin system, Science, 374, 6571, 1149-1152, 2021
[64] Petiziol, F.; Dive, B.; Mintert, F.; Wimberger, S., Fast adiabatic evolution by oscillating initial Hamiltonians, Phys. Rev. A, 98, Article 043436 pp., 2018
[65] Boyers, E.; Pandey, M.; Campbell, D. K.; Polkovnikov, A.; Sels, D.; Sushkov, A. O., Floquet-engineered quantum state manipulation in a noisy qubit, Phys. Rev. A, 100, Article 012341 pp., 2019
[66] Huang, C.-H.; Yang, C.-H.; Chen, C.-C.; Dzurak, A. S.; Goan, H.-S., High-fidelity and robust two-qubit gates for quantum-dot spin qubits in silicon, Phys. Rev. A, 99, Article 042310 pp., 2019
[67] Claeys, P. W.; Pandey, M.; Sels, D.; Polkovnikov, A., Floquet-engineering counterdiabatic protocols in quantum many-body systems, Phys. Rev. Lett., 123, Article 090602 pp., 2019
[68] Carolan, Eoin; Çakmak, Barış; Campbell, Steve, Robustness of controlled Hamiltonian approaches to unitary quantum gates, Phys. Rev. A, 108, Article 022423 pp., 2023
[69] Di Tullio, M.; Rossignoli, R.; Cerezo, M.; Gigena, N., Fermionic entanglement in the Lipkin model, Phys. Rev. A, 100, Article 062104 pp., 2019
[70] Prielinger, L.; Hartmann, A.; Yamashiro, Y.; Nishimura, K.; Lechner, W.; Nishimori, H., Two-parameter counter-diabatic driving in quantum annealing, Phys. Rev. Res., 3, Article 013227 pp., 2021
[71] Mueller, M.; Hammerer, K.; Zhou, Y. L.; Roos, C. F.; Zoller, P., Simulating open quantum systems: from many-body interactions to stabilizer pumping, New J. Phys., 13, Aug. 2011 · Zbl 1448.81401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.