×

A low-frequency fast multipole boundary element method for acoustic problems in a subsonic uniform flow. (English) Zbl 07855335

MSC:

76-XX Fluid mechanics
65-XX Numerical analysis

Software:

DLMF
Full Text: DOI

References:

[1] Gabard, G.; Astley, R. J.; Tahar, M. Ben, Stability and accuracy of finite element methods for flow acoustics. I: general theory and application to one-dimensional propagation, Int J Numer Methods Eng, 63, 947-973, 2005 · Zbl 1085.76036
[2] Gupta, P.; Parey, A., Prediction of sound transmission loss of cylindrical acoustic enclosure using statistical energy analysis and its experimental validation, J Acoust Soc Am, 151, 544-560, 2022
[3] Kam, E. W.S.; So, R. M.C.; Leung, R. C.K., Lattice boltzmann method simulation of aeroacoustics and nonreflecting boundary conditions, AIAA J, 45, 1703-1712, 2007
[4] Liu, Y., Fast multipole boundary element method, 2009, Cambridge University Press: Cambridge University Press New York
[5] Preuss, S.; Gurbuz, C.; Jelich, C.; Baydoun, S. K.; Marburg, S., Recent advances in acoustic boundary element methods, J Theor Comput Acoust, 30, 2022 · Zbl 1533.76088
[6] Li, R.; Liu, Y.; Ye, W., A fast direct boundary element method for 3D acoustic problems based on hierarchical matrices, Eng Anal Bound Elem, 147, 171-180, 2023 · Zbl 1521.74335
[7] Wang, Y.; Wang, Q.; Wang, G.; Huang, Y.; Wang, S., An adaptive dual-information FMBEM for 3D elasticity and its GPU implementation, Eng Anal Bound Elem, 37, 236-249, 2013 · Zbl 1351.74146
[8] Takahashi, T.; Hirai, T.; Isakari, H.; Matsumoto, T., An isogeometric boundary element method for three-dimensional doubly-periodic layered structures in electromagnetics, Eng Anal Bound Elem, 136, 37-54, 2022 · Zbl 1521.74356
[9] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J Comput Phys, 73, 325-348, 1987 · Zbl 0629.65005
[10] Zheng, C.; Matsumoto, T.; Takahashi, T.; Chen, H., A wideband fast multipole boundary element method for three dimensional acoustic shape sensitivity analysis based on direct differentiation method, Eng Anal Bound Elem, 36, 361-371, 2012 · Zbl 1245.74097
[11] Liu, Y. J.; Mukherjee, S.; Nishimura, N.; Schanz, M.; Ye, W.; Sutradhar, A.; Pan, E.; Dumont, N. A.; Frangi, A.; Saez, A., Recent advances and emerging applications of the boundary element method, Appl Mech Rev, 64, 2012
[12] Krishnasamy, G.; Schmerr, L. W.; Rudolphi, T. J.; Rizzo, F. J., Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering, J Appl Mech, 57, 404-414, 1990 · Zbl 0729.73251
[13] Yan, Z. Y.; Gao, X. W., The development of the pFFT accelerated BEM for 3-D acoustic scattering problems based on the Burton and Miller’s integral formulation, Eng Anal Bound Elem, 37, 409-418, 2013 · Zbl 1351.76153
[14] Bebendorf, M.; Rjasanow, S., Adaptive low-rank approximation of collocation matrices, Computing, 70, 1-24, 2003 · Zbl 1068.41052
[15] Liu, Y. J.; Mukherjee, S.; Nishimura, N.; Schanz, M.; Ye, W.; Sutradhar, A.; Pan, E.; Dumont, N. A.; Frangi, A.; Saez, A., Recent advances and emerging applications of the boundary element method, Appl Mech Rev, 64, Article 030802 pp., 2011
[16] Liu, Y., On the BEM for acoustic wave problems, Eng Anal Bound Elem, 107, 53-62, 2019 · Zbl 1464.76096
[17] Agarwal, A.; Dowling, A. P., Low-Frequency Acoustic Shielding by the Silent Aircraft Airframe, AIAA Jl, 45, 358-365, 2007
[18] Hu, F. Q.; Pizzo, M. E.; Nark, D. M., On the use of a Prandtl-Glauert-Lorentz transformation for acoustic scattering by rigid bodies with a uniform flow, J Sound Vib, 443, 198-211, 2019
[19] Chapman, C. J., Similarity variables for sound radiation in a uniform flow, J Sound Vib, 233, 157-164, 2000 · Zbl 1237.76168
[20] Tsuji, T.; Tsuchiya, T.; Kagawa, Y., Finite element and boundary element modelling for the acoustic wave transmission in mean flow medium, J Sound Vib, 255, 849-866, 2002
[21] Casenave, F.; Ern, A.; Sylvand, G., Coupled BEM-FEM for the convected Helmholtz equation with non-uniform flow in a bounded domain, J Comput Phys, 257, 627-644, 2014 · Zbl 1349.76184
[22] Wu, T. W.; Lee, L., A direct boundary integral formulation for acoustic radiation in a subsonic uniform flow, J Sound Vib, 175, 51-63, 1994 · Zbl 0945.76542
[23] De Lacerda, L. A.; Wrobel, L. C.; Mansur, W. J., A boundary integral formulation for two-dimensional acoustic radiation in a subsonic uniform flow, J Acoust Soc Am, 100, 98-107, 1996
[24] Barhoumi, B.; Hamouda, S. B.; Bessrour, J., A simplified two-dimensional boundary element method with arbitrary uniform mean flow, Theor Appl Mech Lett, 7, 207-221, 2017
[25] Liu, X.; Wu, H.; Jiang, W.; Sun, R., A fast multipole boundary element method for three-dimensional acoustic problems in a subsonic uniform flow, Int J Numer Methods Fluids, 93, 1669-1689, 2021
[26] Liu, X.; Wu, H.; Sun, R.; Jiang, W., A fast multipole boundary element method for half-space acoustic problems in a subsonic uniform flow, Eng Anal Bound Elem, 137, 16-28, 2022 · Zbl 1521.76509
[27] Rahola, J., Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems, BIT Numer Math, 36, 333-358, 1996 · Zbl 0854.65122
[28] Wu, H.; Liu, Y.; Jiang, W., A low-frequency fast multipole boundary element method based on analytical integration of the hypersingular integral for 3D acoustic problems, Eng Anal Bound Elem, 37, 309-318, 2013 · Zbl 1351.76152
[29] Cheng, H.; Crutchfield, W. Y.; Gimbutas, Z.; Greengard, L. F.; Ethridge, J. F.; Huang, J.; Rokhlin, V.; Yarvin, N.; Zhao, J., A wideband fast multipole method for the Helmholtz equation in three dimensions, J Comput Phys, 216, 300-325, 2006 · Zbl 1093.65117
[30] Epton, M. A.; Dembart, B., Multipole translation theory for the three-dimensional laplace and helmholtz equations, Siam J Sci Comput, 16, 865-897, 1995 · Zbl 0852.31006
[31] Cheng, H.; Greengard, L.; Rokhlin, V., A fast adaptive multipole algorithm in three dimensions, J Comput Phys, 155, 468-498, 1999 · Zbl 0937.65126
[32] Shen, L.; Liu, Y. J., An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation, Comput Mech, 40, 461-472, 2006 · Zbl 1176.76083
[33] Yasuda, Y.; Oshima, T.; Sakuma, T.; Gunawan, A.; Masumoto, T., Fast multipole boundary element method for low-frequency acoustic problems based on a variety of formulations, J Comput Acoust, 18, 363-395, 2010 · Zbl 1270.76045
[34] Yasuda, Y.; Higuchi, K.; Oshima, T.; Sakuma, T., Efficient technique in low-frequency fast multipole boundary element method for plane-symmetric acoustic problems, Eng Anal Bound Elem, 36, 1493-1501, 2012 · Zbl 1351.76154
[35] Gumerov, N. A.; Kaneko, S.; Duraiswami, R., Recursive computation of the multipole expansions of layer potential integrals over simplices for efficient fast multipole accelerated boundary elements, J Comput Phys, 486, 2023 · Zbl 07788129
[36] Gumerov, N. A.; Duraiswami, R., Recursions for the computation of multipole translation and rotation coefficients for the 3-D helmholtz equation, Siam J. Sci. Comput., 25, 1344-1381, 2003 · Zbl 1072.65157
[37] Burton, A. J.; Miller, G. F.; Wilkinson, J. H., The application of integral equation methods to the numerical solution of some exterior boundary-value problems, Proc R Soc Lond A Math Phys Sci, 323, 201-210, 1971 · Zbl 0235.65080
[38] Zheng, C.; Bi, C.; Zhang, C.; Zhang, Y.; Chen, H., Fictitious eigenfrequencies in the BEM for interior acoustic problems, Eng Anal Bound Elem, 104, 170-182, 2019 · Zbl 1464.76120
[39] Guiggiani, M.; Krishnasamy, G.; Rudolphi, T. J.; Rizzo, F. J., A general algorithm for the numerical solution of hypersingular boundary integral equations, J Appl Mech, 59, 604-614, 1992 · Zbl 0765.73072
[40] Guiggiani, M., The evaluation of cauchy principal value integrals in the boundary element method—A review, Math Comput Model, 15, 175-184, 1991 · Zbl 0724.65019
[41] Liu, Y. J.; Chen, S. H., A new form of the hypersingular boundary integral equation for 3-D acoustics and its implementation with C0 boundary elements, Comput Methods Appl Mech Eng, 173, 375-386, 1999 · Zbl 0946.76051
[42] Matsumoto, T.; Zheng, C.; Harada, S.; Takahashi, T., Explicit evaluation of hypersingular boundary integral equation for 3-D helmholtz equation discretized with constant triangular element, J Comput Sci Technol, 4, 194-206, 2010
[43] Wu, H.; Ye, W.; Jiang, W., A collocation BEM for 3D acoustic problems based on a non-singular Burton-Miller formulation with linear continuous elements, Comput Methods Appl Mech Eng, 332, 191-216, 2018 · Zbl 1439.74488
[44] Zhang, P.; Wu, T. W., A hypersingular integral formulation for acoustic radiation in moving flows, J Sound Vib, 206, 309-326, 1997 · Zbl 1235.76173
[45] Zheng, C. J.; Chen, H. B.; Gao, H. F.; Du, L., Is the Burton-Miller formulation really free of fictitious eigenfrequencies?, Eng Anal Bound Elem, 59, 43-51, 2015 · Zbl 1403.76129
[46] Marburg, S.; Burton, The; Method, Miller, Unlocking another mystery of its coupling parameter, J Comput Acoust, 24, Article 1550016 pp., 2015
[47] Chen, X.; He, Q.; Zheng, C. J.; Wan, C.; Bi, C. X.; Wang, B., A parameter study of the burton-miller formulation in the BEM analysis of acoustic resonances in exterior configurations, J Theor Comput Acoust, 29, Article 2050023 pp., 2020 · Zbl 1533.76049
[48] Olver, F. W.J., NIST handbook of mathematical functions, 2010, Cambridge University Press: Cambridge University Press New York · Zbl 1198.00002
[49] Jiang, L. J.; Chew, W. C., A mixed-form fast multipole algorithm, IEEE Trans Antennas Propag, 53, 4145-4156, 2005
[50] Liu, Y. J.; Nishimura, N., The fast multipole boundary element method for potential problems: a tutorial, Eng Anal Bound Elem, 30, 371-381, 2006 · Zbl 1187.65134
[51] Gumerov, N. A.; Duraiswami, D., Fast multipole methods for the helmholtz equation in three dimensions, 2005, Elsevier
[52] Coifman, R.; Rokhlin, V.; Wandzura, S., The fast multipole method for the wave equation: a pedestrian prescription, IEEE Antennas Propag Mag, 35, 7-12, 1993, . (USA)
[53] Song, J.; Cai-Cheng, L.; Cho, C. W., Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects, IEEE Trans Antennas Propag, 45, 1488-1493, 1997
[54] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J Sci Stat Comput, 7, 856-869, 1986, . (USA) · Zbl 0599.65018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.