×

Nonlinear dynamic response of FG-GPLRC beams induced by two successive moving loads. (English) Zbl 07855263


MSC:

74-XX Mechanics of deformable solids
78-XX Optics, electromagnetic theory
Full Text: DOI

References:

[1] Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano Lett, 902-907 (2008)
[2] Lee, C.; Wei, X.; Kysar, J.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 385-388 (2008)
[3] Geim, A.; Novoselov, K., The rise of graphene. Nat Mater, 183-191 (2007)
[4] Park, J.; Jayawardena, H. S.N.; Chen, X.; Jayawardana, K. W.; Sundhoro, M.; Ada, E.; Yan, M., A general method for the fabrication of graphene-nanoparticle hybrid material. Chem Commu, 14, 2882-2885 (2015)
[5] Soldano, C.; Mahmood, A.; Dujardin, E., Production, properties and potential of graphene. Carbon, 8, 2127-2150 (2010)
[6] Yuan, S.; Li, S.; Zhu, J.; Tang, Y., Additive manufacturing of polymeric composites from material processing to structural design. Compos Part B Eng (2021)
[7] Safaee, S.; Schock, M.; Joyee, E. B.; Pan, Y.; Chen, R. K., Field-assisted additive manufacturing of polymeric composites. Addi Manu (2022)
[8] Miyamoto, Y.; Kaysser, W. A.; Rabin, B. H.; Kawasaki, A.; Ford, R. G., Functionally graded materials: design, processing and application (1999), Kluwer Academic Publishers: Kluwer Academic Publishers London
[9] Wattanasakulpong, N.; Bui, T. Q., Vibration analysis of third-order shear deformable FGM beams with elastic support by Chebyshev collocation method. Int J Struct Stab Dyn, 5 (2018) · Zbl 1535.74313
[10] Tossapanon, P.; Wattanasakulpong, N., Flexural vibration analysis of functionally graded sandwich plates resting on elastic foundation with arbitrary boundary conditions: Chebyshev collocation technique. J Sandw Struct Mater, 2, 156-189 (2020)
[11] Nguyen, H. X.; Nguyen, T. N.; Abdel-Wahab, M.; Bordas, S. P.A.; Nguyen-Xuan, H.; Vo, T. P., A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Comput Methods Appl Mech Eng, 904-940 (2017) · Zbl 1439.74453
[12] Karamanlı A. Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory. Compos Struct 174, 70-86.
[13] Feng, C.; Kitipornchai, S.; Yang, J., Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng Struct, 110-119 (2017)
[14] Yang, J.; Wu, H.; Kitipornchai, S., Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct, 111-118 (2017)
[15] Song, M.; Kitipornchai, S.; Yang, J., Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct, 579-588 (2017)
[16] Karamanli A., Vo T.P. Finite element model for carbon nanotube-reinforced and graphene nanoplatelet-reinforced composite beams. Compos Struct 264, 113739.
[17] Zhao, S.; Zhao, Z.; Yang, Z.; Ke, L. L.; Kitipornchai, S.; Yang, J., Functionally graded graphene reinforced composite structures: A review. Eng Struct (2020)
[18] Song, M.; Gong, Y.; Yang, J.; Zhu, W.; Kitipornchai, S., Nonlinear free vibration of cracked functionally graded graphene platelet-reinforced nanocomposite beams in thermal environments. J Sound Vibra (2020)
[19] Wu, H.; Li, Y.; Li, L.; Kitipornchai, S.; Wang, L.; Yang, J., Free vibration analysis of functionally graded graphene nanocomposite beams partially in contact with fluid. Compos Struct (2022)
[20] Liu, D.; Chen, D.; Yang, J.; Kitipornchai, S., Buckling and free vibration of axially functionally graded graphene reinforced nanocomposite beams. Eng Struct (2021)
[21] Guo, L. J.; Mao, J. J.; Zhang, W.; Liu, Y. Z.; Chen, J.; Zhao, W., Modeling and analyze of behaviors of functionally graded graphene reinforced composite beam with geometric imperfection in multiphysics. Aerosp Sci Technol (2022)
[22] Tabatabaei-Nejhad, S. Z.; Malekzadeh, P. M.; Eghtesad, M., Out-of-plane vibration of laminated FG-GPLRC curved beams with piezoelectric layers. Thin-Walled Struct (2020)
[23] Yang, Z.; Liu, A.; Lai, S. K.; Safaei, B.; Lv, J.; Huang, Y.; Fu, J., Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches. Eng Struct (2022)
[24] Ramezani, M.; Rezaiee-Pajand, M.; Tornabene, F., Linear and nonlinear mechanical responses of FG-GPLRC plates using a novel strain-based formulation of modified FSDT theory. Int J Non-Linear Mech (2022)
[25] Qian, Q.; Zhu, F.; Fan, Y.; Hang, Z.; Feng, C.; Yang, J., Parametric study on nonlinear vibration of FG-GNPRC dielectric beam with Kelvin-Voigt damping. Thin-Walled Struct (2023)
[26] Zhu, F.; Feng, C.; Wang, Y.; Qian, Q.; Hang, Z.; Yang, J.; Wang, S., Damped nonlinear dynamics of FG-GPLRC dielectric beam with active tuning using DQ and IHB methods. Int J Struct Stab Dyn (2022)
[27] Ni, Z.; Zhu, F.; Fan, Y.; Yang, J.; Hang, Z.; Feng, C.; Yang, J., Numerical study on nonlinear vibration of FG-GNPRC circular membrane with dielectric properties. Mech Adv Mater Struct (2023)
[28] Zhao, S.; Zhang, Y.; Wu, H.; Zhang, Y.; Yang, J.; Kitipornchai, S., Tunable nonlinear bending behaviors of functionally graded graphene origami enabled auxetic metamaterial beams. Compos Struct (2022)
[29] Zhao, S.; Zhang, Y.; Wu, H.; Zhang, Y.; Yang, J., Functionally graded graphene origami-enabled auxetic metamaterial beams with tunable buckling and postbuckling resistance. Eng Struct (2022)
[30] Song, M.; Zhou, L.; Karunasena, W.; Yang, J.; Kitipornchai, S., Nonlinear dynamic instability of edge-cracked functionally graded graphene-reinforced composite beams. Nonlinear Dyn, 2423-2441 (2022)
[31] Wang, J.; Zhou, L.; Chen, L.; Song, M.; Yang, J.; Kitipornchai, S., Aeroelastic flutter of actively controlled nanocomposite beams with an open edge crack. Aerosp Sci Technol (2023)
[32] Wang, Y.; Zhang, W., On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams. Compos Struct (2022)
[33] Zhang, W.; Ma, H.; Wang, Y.; Wang, Y., Nonlinear transient thermo-mechanical responses of porous graphene platelet-reinforced cylindrical panels under moving distributed loads. Thin-Walled Struct (2023)
[34] Zhang, W.; Wang, C.; Wang, Y., Thermo-mechanical analysis of porous functionally graded graphene reinforced cylindrical panels using an improved third order shear deformable model. Appl Math Model, 453-473 (2023) · Zbl 1510.82024
[35] Wang, Y.; Xie, K.; Fu, T., Vibration analysis of functionally graded graphene oxide-reinforced composite beams using a new Ritz-solution shape function. J Braz Soc Mech Sci Eng, 180 (2020)
[36] Wang, Y.; Xie, K.; Fu, T.; Shi, C., Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses. Compos Struct, 928-939 (2019)
[37] Chaikittiratana, A., Wattanasakulpong N. Gram-Schmidt-Ritz method for dynamic response of FG-GPLRC beams under multiple moving loads. Mech Des Struct Mach, 7, 2427-2448 (2022)
[38] Songsuwan, W.; Prabkeao, C.; Wattanasakulpong, N., On linear and nonlinear bending of functionally graded graphene nanoplatelet reinforced composite beams using Gram-Schmidt-Ritz method. Mech Des Struct Mach (2021)
[39] Eiadtrong, S.; Wattanasakulpong, N., How far is the difference between mechanical behavior of ideal and non-ideal FG-GPLRC beams?. Int J Struct Stab Dyn, 5 (2023) · Zbl 1537.74195
[40] Songsuwan, W.; Wattanasakulpong, N.; Vo, T. P., Nonlinear vibration of third-order shear deformable FG-GPLRC beams under time-dependent forces: Gram-Schmidt-Ritz method. Thin-Walled Struct (2022)
[41] Frýba, L., Vibration of solids and structures under moving loads (1999), Thomas Telford: Thomas Telford London
[42] Colmenares, D.; Andersson, A.; Karoumi, R., Closed-form solution for mode superposition analysis of continuous beams on flexible supports under moving harmonic loads. J Sound Vibra (2022)
[43] Chen, J. S.; Wen, Q. W.; Yeh, C., Steady state responses of an infinite beam resting on a tensionless visco-elastic foundation under a harmonic moving load. J Sound Vibra (2022)
[44] Şimşek, M.; Cansiz, S., Dynamics of elastically connected double-functionally graded beam systems with different boundary conditions under action of a moving harmonic load. Compos Struct, 9, 2861-2878 (2012)
[45] Şimşek, M.; Kocatürk, T.; Akbaş, Ş. D., Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load. Compos Struct, 8, 2358-2364 (2012)
[46] Şimşek, M.; Al-shujairi, M., Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads. Compos B Eng, 18-34 (2017)
[47] Yang, Y.; Kou, K.; Lam, C. C.; Lu, V., Dynamic behaviors of tapered bi-directional functionally graded beams with various boundary conditions under action of a moving harmonic load. Eng Analy Boun Ele, 225-239 (2019) · Zbl 1464.74344
[48] Shi, G., A new simple third-order shear deformation theory of plates. Int J Solids Struct, 4399-4417 (2002) · Zbl 1356.74123
[49] Song, Y.; Sue, K.; Li, Q., A solution method for free vibration of intact and cracked polygonal thin plates using the Ritz method and Jacobi polynomials. J. Sound Vibra (2022)
[50] Songsuwan, W.; Wattanasakulpong, N.; Kumar, S., Nonlinear transient response of sandwich beams with functionally graded porous core under moving load. Eng Anal Bound Elem, 11-24 (2023) · Zbl 1537.74215
[51] Ke, L. L.; Yang, J.; Kitipornchai, S., Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct, 676-683 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.