×

Breather wave solutions on the Weierstrass elliptic periodic background for the \((2 + 1)\)-dimensional generalized variable-coefficient KdV equation. (English) Zbl 07855213


MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
Full Text: DOI

References:

[1] Craik, A. D., Wave Interactions and Fluid Flows, 1988, Cambridge University Press: Cambridge University Press, London · Zbl 0712.76002
[2] Hasegawa, A., Optical Soliton Theory and its Applications in Communication, 2002, Springer: Springer, Berlin
[3] Malomed, B. A., Nonlinear optics: Symmetry breaking in laser cavities, Nat. Photonics, 9, 5, 287, 2015 · doi:10.1038/nphoton.2015.66
[4] Pitaevskii, L.; Stringari, S., Bose-Einstein Condensation and Superfluidity, 2016, Oxford University Press: Oxford University Press, Oxford · Zbl 1347.82004
[5] Bailung, H.; Sharma, S. K.; Nakamura, Y., Observation of Peregrine solitons in a multicomponent plasma with negative ions, Phys. Rev. Lett., 107, 25, 255005, 2011 · doi:10.1103/PhysRevLett.107.255005
[6] Madsen, P. A.; Bingham, H. B.; Liu, H., A new Boussinesq method for fully nonlinear waves from shallow to deep water, J. Fluid Mech., 462, 1-30, 2002 · Zbl 1061.76009 · doi:10.1017/S0022112002008467
[7] Yan, Z. Y., Vector financial rogue waves, Phys. Lett. A, 375, 48, 4274-4279, 2011 · Zbl 1254.91190 · doi:10.1016/j.physleta.2011.09.026
[8] Hirota, R., Direct Methods in Soliton Theory, 2004, Springer: Springer, Berlin
[9] Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B., Inverse scattering theory of the heat equation for a perturbed one-soliton potential, J. Math. Phys., 43, 2, 1044-1062, 2002 · Zbl 1059.35112 · doi:10.1063/1.1427410
[10] Ganguly, A.; Das, A., Generalized Korteweg-de Vries equation induced from position-dependent effective mass quantum models and mass-deformed soliton solution through inverse scattering transform, J. Math. Phys., 55, 11, 112102, 2014 · Zbl 1319.35217 · doi:10.1063/1.4900895
[11] Zhang, G. Q.; Yan, Z. Y., Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions, Physica D, 402, 132170, 2020 · Zbl 1453.37069 · doi:10.1016/j.physd.2019.132170
[12] Rogers, C.; Schief, W. K., Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, 2002, Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1019.53002
[13] Tu, J. M.; Tian, S. F.; Xu, M. J.; Song, X. Q.; Zhang, T. T., Bäcklund transformation, infinite conservation laws and periodic wave solutions of a generalized \((3+1)\)-dimensional nonlinear wave in liquid with gas bubbles, Nonlinear Dyn., 83, 1199-1215, 2016 · Zbl 1351.37249 · doi:10.1007/s11071-015-2397-2
[14] Matveev, V. B.; Salle, M. A., Darboux Transformation and Solitons, 1991, Springer-Verlag: Springer-Verlag, Berlin · Zbl 0744.35045
[15] Wen, X. Y.; Yang, Y. Q.; Yan, Z. Y., Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation, Phys. Rev. E, 92, 012917, 2015 · doi:10.1103/PhysRevE.92.012917
[16] Wen, X. Y.; Yan, Z. Y.; Zhang, G. Q., Nonlinear self-dual network equations: Modulation instability, interactions of higher-order discrete vector rational solitons and dynamical behaviours, Proc. R. Soc. A, 476, 20200512, 2020 · Zbl 1472.78029 · doi:10.1098/rspa.2020.0512
[17] Gesztesy, F.; Holden, H., Soliton Equations and their Algebro-Geometric Solutions: Volume I, \((1+1)\)-Dimensional Continuous Models, 2003, Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1061.37056
[18] Gesztesy, F.; Holden, H., Soliton Equations and their Algebro-Geometric Solutions: Volume II, \((1+1)\)-Dimensional Continuous Models, 2008, Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1151.37056
[19] Pu, J. C.; Chen, Y., Data-driven forward-inverse problems for Yajima-Oikawa system using deep learning with parameter regularization, Commun. Nonlinear Sci. Numer. Simul., 118, 107051, 2023 · Zbl 1523.76019 · doi:10.1016/j.cnsns.2022.107051
[20] Zhou, Z. J.; Wang, L.; Yan, Z. Y., Deep neural networks learning forward and inverse problems of two-dimensional nonlinear wave equations with rational solitons, Comput. Math. Appl., 151, 164-171, 2023 · Zbl 1541.35473 · doi:10.1016/j.camwa.2023.09.047
[21] Li, J. H.; Chen, J. C.; Li, B., Gradient-optimized physics-informed neural networks (GOPINNs): A deep learning method for solving the complex modified KdV equation, Nonlinear Dyn., 107, 781-792, 2022 · doi:10.1007/s11071-021-06996-x
[22] Cao, C. W.; Geng, X. G., C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy, J. Phys. A: Math. Gen., 23, 18, 4117, 1990 · Zbl 0719.35082 · doi:10.1088/0305-4470/23/18/017
[23] Chen, J. B.; Pelinovsky, D. E., Rogue periodic waves of the focusing nonlinear Schrödinger equation, Proc. R. Soc. A: Math. Phys., 474, 2210, 20170814, 2018 · Zbl 1402.35256 · doi:10.1098/rspa.2017.0814
[24] Chen, J. B.; Zhang, R. S., The complex Hamiltonian systems and quasi-periodic solutions in the derivative nonlinear Schrödinger equations, Stud. Appl. Math., 145, 2, 153-178, 2020 · Zbl 1452.35180 · doi:10.1111/sapm.12311
[25] Chen, J. B.; Pelinovsky, D. E., Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation, Phys. Rev. E, 103, 6, 062206, 2021 · doi:10.1103/PhysRevE.103.062206
[26] Chen, J. B.; Pelinovsky, D. E., Rogue periodic waves of the modified KdV equation, Nonlinearity, 31, 5, 1955, 2018 · Zbl 1393.35201 · doi:10.1088/1361-6544/aaa2da
[27] Chen, J. B.; Pelinovsky, D. E., Periodic travelling waves of the modified KdV equation and rogue waves on the periodic background, J. Nonlinear Sci., 29, 6, 2797-2843, 2019 · Zbl 1427.35226 · doi:10.1007/s00332-019-09559-y
[28] Zhang, H. Q.; Chen, F.; Pei, Z. J., Rogue waves of the fifth-order Ito equation on the general periodic travelling wave solutions background, Nonlinear Dyn., 103, 1023-1033, 2021 · Zbl 1516.35173 · doi:10.1007/s11071-020-06153-w
[29] Zhang, H. Q.; Chen, F., Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background, Chaos, 31, 2, 023129, 2021 · Zbl 1467.35273 · doi:10.1063/5.0030072
[30] Li, R. M.; Geng, X. G., Rogue periodic waves of the sine-Gordon equation, Appl. Math. Lett., 102, 106147, 2020 · Zbl 1440.35030 · doi:10.1016/j.aml.2019.106147
[31] Li, R. M.; Geng, X. G., Rogue waves and breathers of the derivative Yajima-Oikawa long wave-short wave equations on theta-function backgrounds, J. Math. Anal. Appl., 527, 1, 127399, 2023 · Zbl 1530.35255 · doi:10.1016/j.jmaa.2023.127399
[32] Geng, X. G.; Li, R. M.; Xue, B., A vector Geng-Li model: New nonlinear phenomena and breathers on periodic background waves, Physica D, 434, 133270, 2022 · Zbl 1490.35093 · doi:10.1016/j.physd.2022.133270
[33] Li, R. M.; Geng, J. R.; Geng, X. G., Rogue-wave and breather solutions of the Fokas-Lenells equation on theta-function backgrounds, Appl. Math. Lett., 142, 108661, 2023 · Zbl 1530.35285 · doi:10.1016/j.aml.2023.108661
[34] Kedziora, D. J.; Ankiewicz, A.; Akhmediev, N., Rogue waves and solitons on a cnoidal background, Eur. Phys. J. Spec. Top., 223, 1, 43-62, 2014 · doi:10.1140/epjst/e2014-02083-4
[35] Chin, S. A.; Ashour, O. A.; Nikolić, S. N.; Belić, M. R., Peak-height formula for higher-order breathers of the nonlinear Schrödinger equation on nonuniform backgrounds, Phys. Rev. E, 95, 1, 012211, 2017 · doi:10.1103/PhysRevE.95.012211
[36] Lou, S. Y.; Cheng, X. P.; Tang, X. Y., Dressed dark solitons of the defocusing nonlinear Schrödinger equation, Chin. Phys. Lett., 31, 7, 070201, 2014 · doi:10.1088/0256-307X/31/7/070201
[37] Lin, J.; Jin, X. W.; Gao, X. L.; Lou, S. Y., Solitons on a periodic wave background of the modified KdV-Sine-Gordon equation, Commun. Theor. Phys., 70, 2, 119, 2018 · Zbl 1451.35168 · doi:10.1088/0253-6102/70/2/119
[38] Feng, B. F.; Ling, L. M.; Takahashi, D. A., Multi-breather and high-order rogue waves for the nonlinear Schrödinger equation on the elliptic function background, Stud. Appl. Math., 144, 1, 46-101, 2020 · Zbl 1454.35338 · doi:10.1111/sapm.12287
[39] Peng, W. Q.; Pu, J. C.; Chen, Y., PINN deep learning method for the Chen-Lee-Liu equation: Rogue wave on the periodic background, Commun. Nonlinear Sci., 105, 106067, 2022 · Zbl 1497.35440 · doi:10.1016/j.cnsns.2021.106067
[40] Yang, Y. Q.; Dong, H. H.; Chen, Y., Darboux-Bäcklund transformation and localized excitation on the periodic wave background for the nonlinear Schrödinger equation, Wave Motion, 106, 102787, 2021 · Zbl 1524.35612 · doi:10.1016/j.wavemoti.2021.102787
[41] Davis, R. E.; Acrivos, A., Solitary internal waves in deep water, J. Fluid Mech., 29, 593-607, 1967 · Zbl 0147.46503 · doi:10.1017/S0022112067001041
[42] Farmer, D. M.; Smith, J. D., Tidal interaction of stratified flow with a sill in Knight Inlet, Deep-Sea Res. A, 27, 239-254, 1980 · doi:10.1016/0198-0149(80)90015-1
[43] Xu, G.; Chabchoub, A.; Pelinovsky, D. E.; Kibler, B., Observation of modulation instability and rogue breathers on stationary periodic waves, Phys. Rev. Res., 2, 3, 033528, 2020 · doi:10.1103/PhysRevResearch.2.033528
[44] Shultz, J. L.; Salamo, G. J., Experimental observation of the continuous pulse-train soliton solution to the Maxwell-Bloch equations, Phys. Rev. Lett., 78, 5, 855, 1997 · doi:10.1103/PhysRevLett.78.855
[45] Mo, C.; Singh, J.; Raney, J. R.; Purohit, P. K., Cnoidal wave propagation in an elastic metamaterial, Phys. Rev. E, 100, 1, 013001, 2019 · doi:10.1103/PhysRevE.100.013001
[46] Yan, Z. Y.; Dai, C. Q., Optical rogue waves in the generalized inhomogeneous higher-order nonlinear Schrödinger equation with modulating coefficients, J. Opt., 15, 064012, 2013 · doi:10.1088/2040-8978/15/6/064012
[47] Yang, Y. Q.; Wang, X.; Yan, Z. Y., Optical temporal rogue waves in the generalized inhomogeneous nonlinear Schrödinger equation with varying higher-order even and odd terms, Nonlinear Dyn., 81, 833-842, 2015 · Zbl 1347.37120 · doi:10.1007/s11071-015-2033-1
[48] Peng, Y. Z., A new \((2+1)\)-dimensional KdV equation and its localized structures, Commun. Theor. Phys., 54, 5, 863, 2010 · Zbl 1220.35154 · doi:10.1088/0253-6102/54/5/17
[49] Toda, K.; Yu, S. J., The investigation into the Schwarz-Korteweg-de Vries equation and the Schwarz derivative in \((2+1)\) dimensions, J. Math. Phys., 41, 7, 4747-4751, 2000 · Zbl 1031.37062 · doi:10.1063/1.533374
[50] Wang, Y.; Chen, Y., Binary Bell polynomial manipulations on the integrability of a generalized \((2+1)\)-dimensional Korteweg-de Vries equation, J. Math. Anal. Appl., 400, 2, 624-634, 2013 · Zbl 1258.35180 · doi:10.1016/j.jmaa.2012.11.028
[51] Pu, J. C.; Chen, Y., Integrability and exact solutions of the \((2+1)\)-dimensional KdV equation with Bell polynomials approach, Acta Math. Appl. Sin-E, 38, 4, 861-881, 2022 · Zbl 1501.35351 · doi:10.1007/s10255-022-1020-9
[52] Wazwaz, A. M., A new \((2+1)\)-dimensional Korteweg-de Vries equation and its extension to a new \((3+1)\)-dimensional Kadomtsev-Petviashvili equation, Phys. Scr., 84, 3, 035010, 2011 · Zbl 1260.35191 · doi:10.1088/0031-8949/84/03/035010
[53] Zhao, Z.; Han, B., The Riemann-Bäcklund method to a quasiperiodic wave solvable generalized variable coefficient \((2+1)\)-dimensional KdV equation, Nonlinear Dyn., 87, 2661-2676, 2017 · Zbl 1373.37165 · doi:10.1007/s11071-016-3219-x
[54] Lü, X.; Lin, F.; Qi, F., Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, Bäcklund transformation and soliton solutions, Appl. Math. Model., 39, 12, 3221-3226, 2015 · Zbl 1443.35135 · doi:10.1016/j.apm.2014.10.046
[55] Chen, J. C.; Ma, Z. Y., Consistent Riccati expansion solvability and soliton-cnoidal wave interaction solution of a \((2+1)\)-dimensional Korteweg-de Vries equation, Appl. Math. Lett., 64, 87-93, 2017 · Zbl 1354.35128 · doi:10.1016/j.aml.2016.08.016
[56] Pastras, G., The Weierstrass Elliptic Function and Applications in Classical and Quantum Mechanics: A Primer for Advanced Undergraduates, 2020, Springer Nature: Springer Nature, Berlin · Zbl 1454.33001
[57] Krichever, I. M., Elliptic solutions of nonlinear integrable equations and related topics, Acta Appl. Math., 36, 7-25, 1994 · Zbl 0811.35123 · doi:10.1007/BF01001540
[58] Brezhnev, Y. V., Elliptic solitons and Gröbner bases, J. Math. Phys., 45, 2, 696-712, 2004 · Zbl 1070.37050 · doi:10.1063/1.1633353
[59] Li, X.; Zhang, D. J., Elliptic soliton solutions: \( \tau\) functions, vertex operators and bilinear identities, J. Nonlinear Sci., 32, 70, 2020 · Zbl 1503.37075 · doi:10.1007/s00332-022-09835-4
[60] Nijhoff, F. W.; Sun, Y. Y.; Zhang, D. J., Elliptic solutions of Boussinesq type lattice equations and the elliptic \(N\) th root of unity, Commun. Math. Phys., 399, 599-650, 2023 · Zbl 1518.39003 · doi:10.1007/s00220-022-04567-8
[61] Gesztesy, F.; Weikard, R., Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies-an analytic approach, Bull. Amer. Math. Soc., 35, 271-317, 1998 · Zbl 0909.34073 · doi:10.1090/S0273-0979-98-00765-4
[62] Zakharov, V. E., Description of the \(n\)-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I: Integration of the Lamé equations, Duke Math. J., 94, 1, 103-139, 1998 · Zbl 0963.37068 · doi:10.1215/S0012-7094-98-09406-6
[63] Eilbeck, J. C.; Enolskii, V. Z.; Previato, E., Varieties of elliptic solitons, J. Phys. A: Math. Gen., 34, 2215-2227, 2001 · Zbl 0988.35138 · doi:10.1088/0305-4470/34/11/314
[64] Matveev, V. B.; Smirnov, A. O., Elliptic solitons and “Freak waves”, St. Petersburg Math. J., 33, 3, 523-551, 2022 · Zbl 1497.37080 · doi:10.1090/spmj/1713
[65] Brezhnev, Y. V., Elliptic solitons with free constants and their isospectral deformations, Rep. Math. Phys., 48, 1-2, 39-46, 2001 · Zbl 1011.37044 · doi:10.1016/S0034-4877(01)80062-8
[66] Sun, Y. Y.; Sun, W. Y., An update of a Bäcklund transformation and its applications to the Boussinesq system, Appl. Math. Comput., 421, 126964, 2022 · Zbl 1510.37110 · doi:10.1016/j.amc.2022.126964
[67] Rudneva, D.; Zabrodin, A., Dynamics of poles of elliptic solutions to the BKP equation, J. Phys. A: Math. Theor., 53, 7, 075202, 2020 · Zbl 1514.37090 · doi:10.1088/1751-8121/ab63a8
[68] Sun, W. Y.; Sun, Y. Y., The degenerate breather solutions for the Boussinesq equation, Appl. Math. Lett., 128, 107884, 2022 · Zbl 1484.35133 · doi:10.1016/j.aml.2021.107884
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.